35
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Development of a metal matrix composite layer on a microalloyed steel surface by dissociating MAX211 Ti2AlC particles using a TIG torch technique

ORCID Icon, , , &
Pages 586-599 | Accepted 30 Jun 2017, Published online: 10 Jul 2017
 

Abstract

A surface engineering method utilised a tungsten inert gas torch to melt a preplaced MAX211, Ti2AlC powder particles into a microalloyed steel substrate with the aim of producing a surface metal matrix composite.. In this study, the two different shielding gases, argon and a mixture of argon + helium (80 + 20%), were used to protect the surfaces under different processing conditions, with the aim of finding the optimal conditions for further studies. An analysis of the morphology, microstructure and hardness profile of the melted zone, showed that in general, samples melted under argon achieved a higher hardness and exhibited a smaller penetration into the substrate compared to melting under a mixture of argon + helium. An XRD study showed that the Ti2AlC powder decomposed to TiC particles dispersed in mainly TiAl.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.