408
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Virulence genes fliC, toxA and phzS are common among Pseudomonas aeruginosa isolates from diabetic foot infections

, , , &
Pages 273-279 | Received 01 Mar 2017, Accepted 11 Oct 2017, Published online: 27 Oct 2017
 

Abstract

Background: Outcomes of antibiotic treatment of diabetic foot infections (DFIs) may depend not only on the antimicrobial susceptibility of the aetiologic agents, but also their ability to produce virulence factors. This study aimed to use polymerase chain reaction (PCR) with specific primers to investigate the presence of virulence genes among isolates of Pseudomonas aeruginosa isolates cultured from specimens from diabetic foot and other infections.

Methods: We examined 63 P. aeruginosa isolates from inpatients at two University Hospitals for the presence of 23 known bacterial virulence genes, including lasI, lasR, lasA, lasB, rhll, rhlR, rhlAB, aprA, fliC, toxA, plcH, plcN, ExoS, ExoT, ExoU, ExoY, phzI, phzII, phzM, phzS, pvdA, pilA and pilB.

Results: Seven virulence genes (lasl, lasR, lasB, rhll, rhlR, rhlABand Exo T) were present in each isolate. No isolate expressed or presented aprA gene. We found that fliC (p = .01), toxA (p = .041) and phzS (p < .001) were statistically and significantly more common in diabetic foot isolates, while plcH (p < .001) was significantly more common in other infections.

Conclusions: Among clinical isolates of P. aeruginosa from patients with DFIs, three virulence genes that can play important roles in tissue penetration (fliC), tissue damage and survival under anaerobic condition (phzS) and cell death (toxA) were significantly more common than isolates from other infections. The Multilocus sequence typing (MLST) analysis of diabetic foot isolates failed to point/indicate the existence of a specific clone or was not able to characterize/identify a specific clone/clonal complex group. Development of new agents to inhibit the synthesis of these genes may improve outcomes in DFIs treatment.

Disclosure statement

Each of the authors reports no conflict of interests.

Ethical approval

As the testing used in this study is only a laboratory procedure done on specimens obtained for clinical purposes, there was no need for ethical approval

Informed consent

Patients were treated by their physicians according to standard protocols. As no additional specimens were collected for the virulence testing, and their identity was not linked in this publication to any identifying features, we did not need to obtain informed consent for this testing.

Additional information

Funding

There was no funding for this study

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.