216
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Effect of initial parameter on thermodynamic performance in a liquid oxygen tank with pressurized helium gas

ORCID Icon, , , &
 

Abstract

Heat and mass transfer occurs among different species during the pressurization process with helium gas in cryogenic storage tanks, for which detailed investigations are necessary. In this article, the influence of initial parameters on the thermodynamic performance in a liquid oxygen tank is investigated. Both liquid–vapor interfacial evaporation and mass diffusion are considered. Different initial parameters are compared and analyzed. With the initial liquid temperature increasing from 94.0 to 96.0 K, the total phase change quality decreases by 20%. The initial tank wall temperature ranges from 104.0 to 106.0 K, and the final phase change quality increases by 14.01%. With the oxygen component kept constant, the tank pressure rise was reduced by 23.33% and the total phase change quantity increased by 4.25 times with the helium component ranging from 0.00 to 0.20 kg. When the initial tank pressure remained constant by adjusting the species components of the mixture, the tank pressure rise and the total phase change quantity increased by 17.6% and 8.87 times, with the initial helium increasing from 0.00 to 0.50 kg. The present study provides important conclusion that may supply some technique reference for the design of cryogenic propellant systems.

Additional information

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (2019GF11).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.