241
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Coupled transparent insulation system with low emissivity solar absorber: An experimentally validated building energy simulation study

ORCID Icon, , ORCID Icon & ORCID Icon
 

Abstract

A conversion of shortwave to longwave radiation heat transfer in building envelope system represents an substantial part in low-energy design campaing. For that reason, an experimental test sample of a novel solar façade element based on a Transparent Insulation Material (TIM) with a selective and a nonselective absorber was developed. The investigated element is a part of an opaque lightweight structure of a building envelope. The capability of one widely used Building Energy Simulation (BES) tool is analyzed in terms of its ability to model the performance of the TIM façade element. The good consistency between the simulation results and the experimental data obtained specifically via cooling period indicates that the reference simulation model based on high emisivity of solar absorber was reliable when predicting the energy performance of TIM based façade models. However, the low emissivity of solar absorbers in the façade cavity gives rise significant limitations. They were identified concerning the BES calculation methods and modeling principles. The computational results are significantly underestimated in case of low emissivity internal surface. The methodology developed in this study is expected to provide a reference for simulating the thermal and energy performance of TIM-based building elements with different solar absorbers.

Additional information

Funding

This research was supported by the Slovak Research and Development Agency under the contract No. APVV-16-0126, project VEGA 1/0680/20, project GA 19-20943S and GA 20-00630S supported by Czech Science Foundation and within the strengthening and development of creative activities at the Mendel University in Brno by creating post-doc positions in in the MENDELU institutional plan.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.