223
Views
9
CrossRef citations to date
0
Altmetric
Articles

Catalytic reduction of 4-nitrophenol over biostabilized gold nanoparticles supported onto thioctic acid functionalized silica-coated magnetite nanoparticles and optimization using response surface methodology

&
Pages 489-500 | Received 15 Jul 2019, Accepted 09 Jan 2020, Published online: 04 Feb 2020
 

Abstract

An environmentally benign magnetic gold nanoparticles (AuNPs) catalyst supported onto thioctic acid functionalized silica-coated magnetite nanoparticles, Au–RS–SR–NH–SiO2–Fe3O4,without employing any toxic reductant or capping agent was successfully synthesized. The Phaleria macrocarpa (Scheff.) Boerl (P. macrocarpa) fruit aqueous extract was used as the reducing and stabilizing agents for the biosynthesis of AuNPs. The catalytic performance of the magnetic AuNPs catalyst was evaluated for the reduction of 4-nitrophenol into 4-aminophenol in the presence of NaBH4. A three-factor Box–Behnken design coupled with response surface methodology was applied to evaluate the effects of several operating parameters, namely, volume of NaBH4, 4-nitrophenol concentration, and weight of Au–RS–SR–NH–SiO2–Fe3O4 on the conversion of 4-nitrophenol. The reduction of 4-nitrophenol using Au–RS–SR–NH–SiO2–Fe3O4 was welldescribed by a quadratic polynomial model. A significant quadratic model with p value ˂.0001 and R 2 = 0.9958 was achieved using the analysis of variance (ANOVA). The conversion of 4-nitrophenol to 4-aminophenol was maintained at 90% after five cycles.

Additional information

Funding

The authors gratefully acknowledged for the financial support from the Ministry of Higher Education (MOHE) Malaysia and Universiti Teknologi Malaysia (UTM) through research funding Vot Number 07H16 and 12H53. N. F. Abd Razak is thankful to MOHE for a studentship received through the MyPhD program.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.