194
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimization of sliding windows IMRT treatment planning

, , , & ORCID Icon
 

Abstract

Intensity-modulated radiation therapy (IMRT) with sliding windows is a form of radiation therapy that delivers precise radiation dose to a tumor/target region. It uses a multi-leaf collimator (MLC) to move pairs of unidirectional tungsten leaves across a radiation emitting region to conform the shape of the radiation beam to the target regions. This is a dynamic treatment approach which aims to deliver adequate radiation dose to target regions while minimizing radiation delivery to healthy tissues. This paper proposes a linear optimization model for IMRT with sliding windows. This model directly incorporates a number of deliverability constraints to conform to physical limitations of the LINAC, including the required distance between leaves through the treatment process and restrictions on leaf interdigitation. We demonstrate the viability of this model using patient data and discuss the leaf motion proposed by our model. Such a model can be embedded in treatment planning systems to improve both the quality of the treatment and the efficiency of the treatment planning process.

Additional information

Funding

This work is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), grant number: RGPIN 50503-10205.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.