649
Views
13
CrossRef citations to date
0
Altmetric
Scheduling & Logistics

The robust machine availability problem – bin packing under uncertainty

ORCID Icon, ORCID Icon & ORCID Icon
Pages 997-1012 | Received 14 Jun 2017, Accepted 12 Apr 2018, Published online: 26 Oct 2018
 

Abstract

We define and solve the robust machine availability problem in a parallel machine environment, which aims to minimize the number of identical machines required while completing all the jobs before a given deadline. The deterministic version of this problem essentially coincides with the bin packing problem. Our formulation preserves a user-defined robustness level regarding possible deviations in the job durations. For better computational performance, a branch-and-price procedure is proposed based on a set covering reformulation. We use zero-suppressed binary decision diagrams for solving the pricing problem, which enable us to manage the difficulty entailed by the robustness considerations as well as by extra constraints imposed by branching decisions. Computational results are reported that show the effectiveness of a pricing solver with zero-suppressed binary decision diagrams compared with a mixed integer programming solver.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.