1,069
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Some fixed point theorems in ordered partial metric spaces with applications

& | (Reviewing editor)
Article: 1509426 | Received 10 May 2018, Accepted 22 Jul 2018, Published online: 16 Sep 2018

Abstract

We defined the class of generalized weakly C-contractive mappings in partial metric spaces and proved some fixed-point results for such maps in ordered partial metric spaces without exploiting the continuity of any of the functions. We also establish fixed-point theorem for the integral type of these maps. Example is given to support the validity of our result. Our result generalizes the results of Chen and Zhu [3] and others in the literature

MR subject classifications:

PUBLIC INTEREST STATEMENT

Partial metric space was introduced in 1992 by Mathew to solve the denotational sematics problems in computer science. Fixed-point theorems in this space equally deal with functional equations in mathematics and applied mathematics such as computer sciences, engineering, economics, etc. Differential equations help to model real life problems into mathematical models and their solutions are accurately obtained through the application of fixed-point theorems. Thus fixed-point theorems in ordered partial metric spaces with applications provide unique solutions to differential and integral equations that model real life problems.

1. Introduction

Metric fixed-point theory has been a rigorous area of research in fixed-point theory and applications. A number of studies have been carried out concerning the generalization of metric spaces (see Eke Citation2016, Imaga, & Odetunmibi, Citation2017; Eke & Olaleru, Citation2013; Mustafa & Sims, Citation2006). Matthews (Citation1992) introduced partial metric space to study the denotational semantics of dataflow networks. In the same reference, he proved the partial metric version of the Banach contraction principle. Alber and Guerre-Delabriere (Citation1997), defined weakly contractive mappings on a Hilbert space and established a fixed-point theorem for such mappings. Subsequently, Rhoades (Citation2001) use the concept of weakly contractive mappings and obtained a fixed-point theorem in complete metric space. Choudhury (Citation2009) introduced a class of weakly C-contractive mappings as follows:

A mapping T:X X, where X, d is a complete metric space is said to be weakly Ccontractive or weak Ccontraction if for all x, y X,dTx, Ty 12 dx, Ty + dy, Tx ψ  dx, Ty, dy, Tx.1 where ψ: 0, 2 0, is a continuous mapping such that ψx, y =0 if and only if x= y=0.

Many authors had generalized the weak contractive mappings and proved fixed-point theorems for such mappings in various abstract spaces (see Aage & Salunke, Citation2012; Chi, Karapinar, & Thanh, Citation2013; Gairola & Krishan, Citation2015; Mishra, Tiwari, Mishra, & Mishra, Citation2015). Eke (Citation2016) introduced a class of generalized weakly C-contractive maps by replacing C-contraction maps with Hardy–Rogers version of contractive maps. In the same reference, the fixed point of these maps in G-partial metric spaces is proved. For a decade, the existence of fixed points in ordered metric spaces was initiated by Ran and Reurings (Citation2003). Olatinwo (Citation2010) proved some fixed-point theorems using weak contraction of the integral type. Long, Son, and Hoa (Citation2017) reestablished the uniqueness of two fuzzy weak solutions of fuzzy fractional partial differential equations via the unique fixed point of weakly contractive mappings in partially ordered metric spaces. Long and Dong (Citation2018) established the integral solution of nonlocal problems of fuzzy implicit fractional differential system by employing Krasnoselskii’s fixed-point theorem of generalized contractive mappings in generalized semilinear Banch space. Long, Son, and Rodriguez-Lopez (Citation2018) prove that the fixed point of weakly contractive mappings in partially ordered metric spaces is unique. The authors further apply the result to obtain unique two types of fuzzy solution for fuzzy partial differential equations with local boundary conditions. In this work, we proved some fixed-point theorems for the generalized weakly C-contraction mappings in ordered partial metric spaces. Moreso, the application of these maps are established in the integral type.

2. Preliminaries

The following definitions and results are found in (Matthews, Citation1992).

Definition 2.1: Let X be a nonempty set, and let p:X×X R+be a function satisfying the following:

p1px,y=py,xp2px,x=px,y= py,y iff x= y,p3px,x px,y,p4px,y px,z + pz,y  pz,zfor all x,y,z  X and the pair X, p is called a partial metric space.

Let (X,p) be a partial metric space, then a function dp: X×X 0,  defined as

dpx, y=2px, ypy, y px, x

is a metric on X.

Remark 2.2: In a partial metric space (X, p),

1 px, y =0 x=y but if x=y then px, y may not be zero.2 px, y >0 for all xy,for all x,y X.

Example 2.3: Let X=R+and define px, y=maxx, y, for all x,yX.Then (X, p) is a complete partial metric space. Obviously, p is not a (usual) metric.

Definition 2.4: In a partial metric space (X, p),

(i) a sequence xn is said to converge to a point xX if and only if limnpxn, x=px,x.

(ii) a sequence xn is called Cauchy sequence if and only if limn,mpxn, xm is finite.

(iii) if every Cauchy sequence xn converges to a point xX such that limn,mpxn, xm=px,x

then (X, p) is known as complete partial metric space.

Lemma 2.5 (Chi et al., Citation2013): In a partial metric space (X, p), if a sequence xn converges to a point xX, then  limn pxn,x px,z for all zX. Also if px, x=0, then

 limn pxn,zpx,z for all z X.

Lemma 2.6 (Long et al., Citation2018): In a partial metric space (X, p),

(i) a sequence xn is Cauchy if and only if, it is a Cauchy in X, dp .

(ii) X is complete if and only if it is complete in X, dp.

In addition, limndpxn, x=0 if and only if

limn,mpxn, xm=limnpxn, x=px, x.

If xn is a Cauchy sequence in the metric space X, dp, we have

limn,mdpxn, xm=0

and therefore by definition of dp, we have

limn,mpxn, xm=0

Definition 2.7 (Ran & Reurings, Citation2003): Let X,be a partially ordered set. Then two elements x, yX are said to be totally ordered or ordered if they are comparable. That is, xy or yx.

Definition 2.8: Let X be a nonempty set. The triplet X,,p is called an ordered partial metric space if the following conditions hold:

(i) p is a partial metric on X;

(ii) is a partial order on X.

Definition 2.9 (Shatanawi, Citation2011): A self-mapping ψ on a positive real numbers is said to be an altering distance function, if holds for all t[0,) such that:

(i) ψ is continuous and non-decreasing,

(ii) ψt=0 if and only if t=0.

Rhoades (Citation2001) named the map introduced by Chatterjea after him as C-contraction map. The definition is as follows:

Definition 2.10 (Chatterjea, Citation1972) (C-contraction): Let T: XXwhere (X, d) is a metric space is called a C-contraction if there exists 0 < k < 12 such that for all x, y X the following inequality holds:

(2) dTx, Ty k dx, Ty+dy, Tx.(2)

A more generalized C-contractive mapping is introduced by (Hardy and Rogers Citation1973) and defined as follow

Let (X, d) be a complete metric space and an operator T: XX be a contractive mapping then there exist some numbers a, b, c, e and f, a + b + c + e + f < 1 such that for each x, y X,

(3) dTx,Ty adx,y +bdx,Tx+c dy,Ty+edx,Ty+fdy,Tx(3)

3. Main results

In this work, we introduced a class of generalized weak C-contractive mapping in partial metric spaces by replacing the C-contractive map by Hardy and Rogers contractive map.

Definition 3.1: Let (X, p) be a partial metric space and T: XX be a mapping. Then T is said to be generalized weakly C-contractive if for allx, y X, the following inequality holds:

(4) pTx, Ty  a1px,y+a2px,Tx+a3 py, Ty+a4 px,Ty+a5 py, Tx  ϕ px,y,px,Tx, py, Ty, px,Ty,py, Tx(4)

where  a1,a2,a3,a4,a50, 1, i=15ai< 1, and  ϕ: 0,5 0,  is a continuous function with ϕv, w, x, y, z =0 if and only if v = w = x = y = z = 0.

Remark 3.2: If v = w = x = 0, a1=a2=a3=0,a4=a5=12 and partial metric space is replace with metric space then (4) reduces to (1).

Example 3.3: Let X=0, be equipped with a partial metric which is defined by px,y=maxx,y. Define a mapping T: XX by Tx=x10. Define  ϕ: 0,5 0,  by ϕt=x80 and let a1=14, a2=a3=a4=a5=18. Then weakly C-contractive mapping is extended by Hardy and Rogers contractive mappings.

Theorem 3.4: Let X, be a partially ordered set and suppose that there exists a partial metric on X such that (X, p) is complete. Let T: XX be a nondecreasing mapping such that for comparable x, y X,

(5) ψ(pTx, Ty  φ a1 px,y+a2px,Tx+a3 py, Ty+a4 px,Ty+a5 py, Tx ϕ px,y, px,Tx, py, Ty, px,Ty, py, Tx(5)

where  a1,a2,a3,a4,a50, 1, i=15ai <  1, and ψ,φ are altering distance functions with

(6) ψtφt 0(6)

for t 0, and  ϕ: 0,5 0,  is a continuous function with ϕv, w, x, y, z =0 if and only if v = w = x = y = z = 0. If there exists x0Xsuch that x0Tx0, then T has a fixed point.

Proof: Observe that if T satisfies (5) then it satisfies

(7) ψ(pTx, Ty  φ a px,y +bpx,Tx +bpy, Ty +cpx,Ty +cpy, Tx ϕ px,y, px,Tx, py, Ty, px,Ty, py, Tx(7)

where a=a1, 2b= a2+a3,2c=a4+ a5 ,a+2b+ 2c < 1. We use (7) for our argument.

Let x0Xbe arbitrary chosen. Suppose x0=Tx0 then x0 is the fixed point of T. Let x0Tx0, x1X can be chosen such that x1=Tx0. Since T is nondecreasing function, then

x0x1=Tx0x2=Tx1x3=Tx2.

Continuing the process, a sequence xn can be constructed such that xn+1 =Txn with x0x1 x2x3...xn xn+1... .

If pxn, xn+1=0 for some nN then T has a fixed point. Letting pxn, xn+1 > 0 for all nN, we claim that

(8) pxn, xn+1pxn1, xn, nN(8)

Suppose xn xn+1, pxn, xn+1 > pxn1, xn for some n0 then

(9) pxn0, xn0+1,  > pxn01, xn0, (9)

From (7) and (9) the proof of the claim is established as follows:

ψ pxn0, xn0+1 =ψ pTxn01, Txn0
φ a pxn01, xn0 + b pxn01,Txn01 + b pxn0, Txn0+ c pxn01,Txn0+c pxn0, Txn01s,   ϕ pxn01,xn0, pxn01,Txn01, pxn0, Txn0, pxn01,Txn0, pxn0, Txn01
=φ a pxn01, xn0 + b pxn01,xn0 + b pxn0, xn0+1+ c pxn01,xn0+1+ c pxn0, xn0  ϕ pxn01,xn0, pxn01,xn0, pxn0, xn0+1,pxn01,xn0+1, pxn0, xn0 
φ a pxn01, xn0 + b pxn01,xn0 + b pxn0, xn0+1+ c pxn01,xn0+cp(xn0,xn0+1)cpxn0, xn0+ c pxn0, xn0  ϕ pxn01,xn0, pxn01,xn0, pxn0, xn0+1, pxn0, xn0 
φ a pxn01, xn0 + b pxn01,xn0 + b pxn0, xn0+1+ c pxn01,xn0+cp(xn0,xn0+1)  ϕ pxn01,xn0, pxn01,xn0, pxn0, xn0+1, pxn0, xn0 
φ (a+2b+2c)maxpxn01, xn0,pxn0, xn0+1  ϕ pxn01,xn0, pxn01,xn0, pxn0, xn0+1, pxn0, xn0 
(10) φpxn0, xn0+1ϕ pxn01,xn0, pxn01,xn0, pxn0, xn0+1, pxn0, xn0(10)

Using (6), (10) becomes

(11) ϕ pxn01,xn0, pxn01,xn0, pxn0, xn0+1, pxn01,xn0+1, pxn0, xn0=0(11)

By property of ϕ, (11) yields

(12) pxn91,xn0=0, pxn01,xn0=0, pxn0, xn0+1=0, pxn01,xn0+1=0, pxn0, xn0=0(12)

Since

ψpxn0+1, xn0+2=ψpTxn0, Txn0+1
φ  a pxn0, xn0+1 + b pxn0,Txn0 + b pxn0+1, Txn0+1+ c pxn0,Txn0+1+ c pxn0+1, Txn0,  ϕ pxn0,xn0+1, pxn0,Txn0, pxn0+1, Txn0+1, pxn0,Txn0+1, pxn0+1, Txn0
=φ  a pxn0, xn0+1 + b pxn0,xn0+1 + b pxn0+1, xn0+2+ c pxn0,xn0+2+ c pxn0+1, xn0+1,  ϕ pxn0,xn0+1, pxn0,xn0+1, pxn0+1, xn0+2, pxn0,xn0+2, pxn0+1, xn0+1
φ  a pxn0, xn0+1 + b pxn0,xn0+1 + b pxn0+1, xn0+2+ c pxn0,xn0+1+c pxn0+1, xn0+2,c pxn0+1, xn0+1,+ c pxn0+1, xn0+1,  ϕ pxn0,xn0+1, pxn0,xn0+1, pxn0+1, xn0+2,pxn0+1, xn0+1
φ  a pxn0, xn0+1 + b pxn0,xn0+1 + b pxn0+1, xn0+2+ c pxn0,xn0+1+c pxn0+1, xn0+2,  ϕ pxn0,xn0+1, pxn0,xn0+1, pxn0+1, xn0+2, pxn0+1, xn0+1
φ (a+2b+2c)maxpxn0,xn0+1,pxn0+1,xn0+2  ϕ pxn0,xn0+1, pxn0,xn0+1, pxn0+1, xn0+2, pxn0+1, xn0+1
φ maxpxn0,xn0+1,pxn0+1,xn0+2  ϕ pxn0,xn0+1, pxn0,xn0+1, pxn0+1, xn0+2, pxn0+1, xn0+1
(13) φ pxn0+1,xn0+2ϕ pxn0,xn0+1, pxn0,xn0+1, pxn0+1, xn0+2, pxn0+1, xn0+1(13)

Using (6), (13) becomes

(14) ϕ pxn0,xn0+1, pxn0,xn0+1, pxn0+1, xn0+2, pxn0,xn0+2,pxn0+1, xn0+1=0(14)

By property of ϕ, (14) yields

(15) pxn0,xn0+1=0,pxn0+1, xn0+2=0,pxn0+1, xn0+1=0,pxn0,xn0+2=0(15)

Thus, pxn, xn+1is a decreasing sequence of nonnegative real numbers. Hence, there exists k0 such that

limnpxn, xn+1=k.

From (10) and the above facts, we have

ψ pxn, xn+1φ( pxn, xn+1 ϕ pxn1,xn, pxn1, xn, pxn, xn+1, pxn1,xn+1,pxn, xn
Taking the limit as n in the above inequality yields lim infn ϕ pxn1,xn, pxn1, xn, pxn, xn+1, pxn1,xn+1,pxn, xn=0.

By the continuity of ϕ we have

ϕ lim infnpxn1, xn, lim infnpxn, xn+1, lim infnpxn1, xn+1, lim infn pxn, xn=0.The property of ϕ gives that

(16) lim infnpxn1, xn=0,lim infnpxn, xn+1=0,lim infnpxn1, xn+1=0,lim infn pxn, xn=0.(16)

Taking the inferior limit in (15) and using (16), ψk =0, this implies that k = 0. Therefore limn pxn, xn+1=0.

Now we claim that xn is a Cauchy sequence. It is sufficient to show that x2n is a Cauchy sequence. On the contrary, suppose x2n is not a Cauchy sequence then there exists ε > 0 and two subsequences x2nkand x2mk of x2n such that n(k) > m(k) > k and sequences in (7) tend to ε as k. For two comparable elements x=x2nk+1 and y =x2mk we can obtain from (7) that

ψ px2nk+1, x2mk =ψpTx2nk, Tx2mk1
φ  a px2nk, x2mk1 + b px2nk,Tx2nk + b px2mk1, Tx2mk1+ c px2nk,Tx2mk1 + c px2mk1, Tx2nk ϕ px2nk, x2mk1, px2nk,Tx2nk, px2mk1, Tx2mk1, px2nk,Tx2mk1, px2mk1, Tx2n
(17) φ  a px2nk, x2mk1 + b px2nk,x2nk+1 + b px2mk1, x2mk+ c px2nk,x2mk + c px2mk1, x2nk+1 ϕ px2nk, x2mk1, px2nk,x2nk+1, px2mk1, x2mk, px2nk,x2mk, px2mk1, x2n+1(17)

As k in (17), we obtain

ψε φε ϕε,ε,ε,ε,ε,

this implies that ϕε,ε,ε,ε,ε=0, henceε=0, a contradiction. Thus x2n is a Cauchy sequence and so is xn. Since X,p is complete so X, dpis also complete (by Lemma 2.6). Therefore, the Cauchy sequence xnconverges in X, dp, that is, limnpxn, z=p(z,z)then by Lemma 2.6, we have

(18) limn,mpxn, xm=limnpxn, z=pz,z(18)

By Lemma 2.6, we obtain limnpxn, z=0,

so, by definition ofdp, we obtain

dpxn, xm=2pxn, xm pxm, xm pxn, xn.

Using (16) and taking n, m in above inequality yields

(19) limn,mpxn, xm =0(19)

From (18) and (19), we obtain

(20) limnpxn, z=pz,z=0(20)

By P4, we obtain

pz, Tzpz,xn+pxn, Tzpxn, xn

Taking n and using Equation (16), (20) and Lemma 2.5 in the above inequality yields

(21) pz,Tz pTz,Tz(21)

From P2, we have

(22) pTz,Tz pz,Tz(22)

By (21) and (22), we obtain

ψ pz,Tz=ψpTz,Tz
φapz, z+ bpz, Tz+bpz, Tz+cpz, Tz+cpz, Tz ϕpz, z, pz, Tz, pz, Tz, pz, Tz, pz, Tz
φapz, z+ bpz, Tz+bpz, Tz+cpz, Tz+cpz, Tzϕpz, z, pz, Tz
φa +2b+ 2cmaxpz, z, pz, Tzϕpz,z, pz, Tz
φmaxpz, z, pz, Tz ϕpz, z, pz, Tz.

Using (20) and (6) in above inequality, we obtain

ψpz,Tz φpz, Tz ϕ0, pz, Tz,

this gives ϕ0, pz, Tz 0 this implies that ϕ0, pz, Tz=0. Hence p(z, Tz) = 0. Thus, Tz = z.

Corollary 3.5 (Chen & Zhu, Citation2013): Let X,  be a partially ordered set and suppose that there exists a partial metric in X such that (X, p) is complete. Let T: X Xbe continuous nondecreasing mapping. Suppose that for comparablex, yX, we have

(23) ψpTx, Ty φ px,Ty+py, Tx2 ϕ px,Ty, py, Tx(23)

(24) where ψtφt0(24)

for all t0, and ϕ:0, 2 0,  is a continuous function with ϕ y, z =0 if and only if y = z = 0. If there exists x0X such that x0 Tx0 then T has a fixed point.

Corollary 3.6: Let X,  be a partially ordered set and suppose that there exists a partial metric in X such that (X, p) is complete. Let T: X X be continuous nondecreasing mapping. Suppose that for comparablex, yX, we have

(25) ψ pTx, Ty φ  px,y ϕ px,y,(25)

(26) where ψtφt0(26)

for all t0, and ϕ:0,  0,  is a continuous function with ϕx =0 if and only if x = 0. If there exists x0X such that x0 Tx0 then T has a fixed point.

The proof of the corollary follows from Theorem 3.3.

Remarks 3.7: If we replace ordered partial metric space with G-metric space and ψk=k, φt= t in (25) then corollary 3.5 gives Theorem 2.1 of Chi et al. (Citation2013).

Example 3.8 (Ran & Reurings, Citation2003): Let X = [0,1] with usual order be a partially ordered set and endowed with a partial metricp: X×XR+. This partial metric is defined by p(x, y) = max{x, y}. Then the partial metric space is complete. Also, we define the mapping T:XX by Tx=x3. Let us take ψ,φ: 0, + 0, +such that ψt=t2 and φt =t23, respectively, and take ϕ: 0, +50, + such that ϕ u, v, x, y, z =u+v+x+y+z29.

By simple calculation we have,

(27) pTx, Ty  13px, y (27)
(28) pTx, Ty  13  px, Tx, +py, Ty (28)
(29) pTx, Ty 13 px, Ty +py, Tx(29)

If xy then

pTx, Ty =max x3,y3=x3.

Also,

px, y +px, Tx +py, Ty +px, Ty +py, Tx 

= px, y +px,x3 +py, y3+px, y3+py, x3

= max x, y+max x,x3 + py, y3+maxx, y3+py,x3

= 3x+py,y3+py, x3.

Hence,

 ψpTx, Ty =x29 3x+py,y3+py,x329
3x+ py,y3+py,x323 3x+ py,y3+py,x329
=φ  a1px,y+a2px,Tx+a3py, Ty+a4px,Ty+ a5py, Txϕ px,y, px,Tx, py, Ty,px,Ty, py, Tx.

If y x then we have

pTx, Ty =max x3,y3=y3

Also,

px, y +px, Tx +py, Ty +px, Ty +py, Tx 

= px, y +px,x3 +py, y3+px, y3+py, x3

= max x, y+max x,x3 + py, y3+maxx, y3+py,x3

= 3y+px,x3+px, y3.

Therefore,

 ψpTx, Ty =y29 3y+px,x3+px,y329
3y+ px,x3+px,y323 3y+ px,x3+px,y329
=φ  a1px,y+a2px,Tx+a3py, Ty+a4px,Ty+ a5py, Txϕ px,y, px,Tx, py, Ty,px,Ty, py, Tx.

For a comparable x, y X and with the above argument, we conclude that (5) holds. Therefore all the conditions of Theorem 3.4 are satisfied. The fixed point of T is 0.

4. Application to integral type

Theorem 4.1: Let X,  be a partially ordered set and suppose that there exists a partial metric in X such that (X, p) is complete. Let T: X X be continuous nondecreasing mapping. Suppose that for comparablex, yX, we have

(30) 0pTx, Ty α(s)ds 0 a1 + a2 + a3 + a4 + a5 max px,y, px,Tx,py, Ty,px,Ty , py, Tx)β(s)ds  ϕ0 px,y, px,Tx, py, Ty, px,Ty, py, Txγ(s)ds(30)

where a1, a2,a3,a4,a5 0, 1,i=15ai< 1, and α,β,γ: 0,  0,  is a Lebesgue–Stieltjes integrable mapping which are summable and nonnegative . Suppose ϕ: 0, 5 0,  is a continuous function with ϕv, w, x, y, z =0 if and only if v = w = x = y = z = 0. If there exists x0 X such that x0Tx0, then T has a fixed point.

Proof: We consider the functions ψ,φ: 0,  0, defined by

ψt=0tα(s)ds,φt=0tβ(s)ds,

and ψ and φ altering distance functions satisfying

(31) ψtφt 0(31)

for all t0 . Since ψ and φ satisfied the above condition then the result follows immediately from Theorem 3.3. This completes the proof.

Acknowledgements

The authors thank the anonymous reviewers for their meaningful suggestions that improve the quality of this work. The authors also thank Covenant University for supporting this research work financially.

Additional information

Funding

The authors received no direct funding for this research.

Notes on contributors

Kanayo Stella Eke

Kanayo Stella Eke The first author’s research area focuses on metrical and topological fixed-point theory and applications. She introduced three generalized metric spaces: G-partial metric spaces, G-symmetric spaces, and E-uniform spaces. Dr. K. S. Eke teaches Abstract Mathematics and Real Analysis both at undergraduate and postgraduate levels. She has published more than 18 articles on existence and uniqueness of fixed point for both contractive and expansive mappings in these spaces in reputable international journals to her credit.

Jimevwo Godwin Oghonyon

Jimevwo Godwin Oghonyon The second author specializes in teaching numerical analysis and mathematical software packages like, Octava and Mathemtica both at undergraduate and postgraduate levels. His research area is multidisciplinary as it relates to computational mathematics and simulations. He has published more than 20 articles in different prestigious journals. He is an ardent scholar and committed researcher.

References

  • Aage, C. A., & Salunke, J. N. (2012). Fixed points for weak contraction in G-metric spaces. Applied Mathematics E-Note, 12, 23–28.
  • Alber, Y. I., & Guerre-Delabriere, S. (1997). Principles of weakly contractive maps in Hilbert spaces. In I. Gohberg & Y. Lyubich (Eds.), New results in operator theory and its applications, (Vol. 98, pp. 7–22). Birkhuser, Basel.
  • Chatterjea, S. K. (1972). Fixed-point theorems, C. R Academic Bulgare Sciences, 25, 727–730.
  • Chen, C., & Zhu, C. (2013). Fixed point theorems for weakly C- contractive mappings in partial metric spaces. Fixed Point Theory and Applications, 107, 1687-1812.
  • Chi, K. P., Karapinar, E., & Thanh, T. D. (2013). On the fixed point theorems for generalized weakly contractive mappings on partial metric spaces. Bulletin of the Iranian Mathematical Society, 39(2), 369–381.
  • Choudhury, B. S. (2009). Unique fixed point theorem for weakly C-contractive mappings. Kathmandu University Journal of Science Engineering and Technical, 5(1), 6–13.
  • Eke, K. S. (2016). Fixed point results for generalized weakly C-contractive mappings in ordered G- partial metric spaces. British Journal of Mathematics and Computer Science, 12(1), 1–11. doi:10.9734/BJMCS/2016/18991
  • Eke, K. S., Imaga, O. F., & Odetunmibi, O. A. (2017). Convergence and stability of some modified iterative processes for a class of generalized contractive like operators. IAENG International Journal of Computer Science, 44(4), 17.
  • Eke, K. S., & Olaleru, J. O. (2013). Some fixed point results on ordered G-partial metric spaces. ICASTOR Journal of Mathematical Sciences, 7(1), 65–78.
  • Gairola, U. C., & Krishan, R. (2015). Fixed point theorems for hybrid contraction without continuity. Global Journal of Mathematical Analysis, 3(1), 8–17. doi:10.14419/gjma.v3i1
  • Hardy, G. E., & Rogers, T. D. (1973). A generalisation of a fixed point theory of Reich. Canad Mathematical BullVol, 16(2), 201–206. doi:10.4153/CMB-1973-036-0
  • Long, H. V., & Dong, N. P. (2018). An extension of Krasnoselskii’s fixed point theorem and its application to nonlocal problems for implicit fractional differential systems with uncertainity. Journal Fixed Point Theory Applications, 20(1), 37. doi:10.1007/s11784-018-0507-8
  • Long, H. V., Son, N. T. K., & Hoa, N. V. (2017). Fuzzy fractional partial differential equations in partially ordered metric spaces. Iran Journal Fuzzy Systems, 14(2), 107–126.
  • Long, H. V., Son, N. T. K., & Rodriguez-Lopez, R. (2018). Some generalizations of fixed point theorems in partially ordered metric spaces and applications to partial differential equations with uncertainity. Vietnam Journal Mathematical, 46, 531-555.
  • Matthews, S. G. (1992). Partial metric spaces, 8th British Colloquium for Theoretical Computer Science. In Research Report 212 (pp. 708–718). Dept. of Computer Science, University of Warwick.
  • Mishra, L. N., Tiwari, S. K., Mishra, V. N., & Mishra, V. (2015). Unique fixed point theorems for generalized contractive mappings in partial metric spaces, Journal of Function spaces, 2015, 8, Article ID 960827.
  • Mustafa, Z., & Sims, B. (2006). A new approach to generalised metric spaces. Journal of Nonlinear And Convex Analysis, 7(2), 289–297.
  • Olatinwo, M. O. (2010). Some fixed point theorems for weak contraction conditions of integral type. Acta Universitatis Apulensis, 24, 331–338.
  • Ran, A. C. M., & Reurings, M. C. B. (2003). A fixed point theorem in partially ordered sets and some applications to matrix equations. Proceedings of the American Mathematical Society, 132(5), 1435–1443. doi:10.1090/S0002-9939-03-07220-4
  • Rhoades, B. E. (2001). Some theorems on weakly contractive maps. Nonlinear Analysis, 47, 2683–2693. doi:10.1016/S0362-546X(01)00388-1
  • Shatanawi, W. (2011). Fixed point theorems for nonlinear weakly C-contractive mappings in metric spaces. Mathematical Computation Modelling, 54, 2816–2826. doi:10.1016/j.mcm.2011.06.069