550
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the behaviour of derivative of algebraic polynomials in the regions with cusps

Pages 339-361 | Received 01 Mar 2022, Accepted 08 May 2022, Published online: 18 May 2022

ABSTRACT

In this paper, we study the behavior of derivatives of algebraic polynomials in bounded and unbounded regions of the complex plane. At the same time, both interior and exterior cusp points are allowed on the boundary of such regions. Bernstein-Walsh-type estimates are obtained for derivatives of algebraic polynomials in the specified region with corners for exterior points, as well as Markoff-type estimates for closure of the region. As a result, estimates are found for the derivatives of algebraic polynomials in the whole complex plane. It is also shown that the inequality for the closed region is exact in order for the given region.

MATHEMATICS SUBJECT CLASSIFICATIONS:

1. Introduction

Let C be a complex plane and C¯:=C{}; G C (0G) be a finite Jordan region, L:=G, Ω:=C¯G¯;  Δ:={w:|w|>1} (with respect to C¯). Let function w=Φ(z),Φ: ΩΔ, be the univalent and conformal mapping, normalized by Φ()=, limzΦ(z)z>0, and Ψ:=Φ1. For R>1, let us set LR:={z:|Φ(z)|=R}, GR:=intLR, ΩR:=extLR.

The class of all algebraic polynomials Pn(z) of degree at most nN is denoted by n.

Let an arbitrary fixed system of points {zj}j=1m, distinct from each other, be given on L. Consider Jacobi weight function h(z) being defined as (1) h(z):=h0(z)j=1m|zzj|γj,zGR0,R0>1,(1) where γj>2, for all j=1,2,,m, and there exists a constant c1(G)>0 such that h0(z)c1(G) for all zGR0.

Let 0<p and σ be the two-dimensional Lebesgue measure. We introduce (2) PnAp(h,G)p:=Gh(z)|Pn(z)|pdσz,0<p<,PnA(1,G):=maxzG¯|Pn(z)|,p=,(2) and when L is rectifiable and h(z) defined as in (Equation1) for γj>1, for all j=1,2,,m: (3) Pnpp:=PnLp(h,L)p:=Lh(z)|Pn(z)|p|dz|<,0<p<,Pn:=PnL(1,L):=maxzL|Pn(z)|; Lp(1,L)=:Lp(L).(3) The well-known classical lemma [Citation1] shows that for any Pn(z)n (4) |Pn(z)||Φ(z)|nPnC(G¯),zΩ,(4) holds. If we take zG¯R, then from (Equation4) we see that (5) PnC(G¯R)RnPnC(G¯).(5) Here, we see that PnC(G¯) increases by a constant if the domain G is extended to G1+1n. Considering the following estimate [Citation2], we see that the same holds for norm (Equation3): (6) PnLp(LR)Rn+1pPnLp(L),p>0.(6) Estimate (Equation6) was generalized in [Citation3, Lemma 2.4] for weight function (Equation1) with γj>1, j=1,2,,m, and it was obtained as follows: (7) PnLp(h,LR)Rn+1+γpPnLp(h,L), γ=max{0;γj:1j m}.(7) In [Citation4], an analogue of estimates (Equation4) and (Equation7) in the Ap(h,G)-norm when L=G is a quasiconformal (see: Definition 3.1) with a same weight function (Equation1) is given as follows: PnAp(h,GR)c1Rn+1pPnAp(h,G),p>0, where R:=1+c2(R1) and c2>0, c1:=c1(G,p,c2)>0 are constants independent of n, R.

Further, for arbitrary Pnn, R1=1+1n, and Jordan region G, in [Citation5, Theorem1.1], it was obtained that PnAp(GR)cRn+2pPnAp(GR1),p>0, is true for arbitrary R>R1=1+1n, where c=(2ep1)1p[1+O(1n)], n.

Stylianopoulos [Citation6] showed that if a curve L is quasiconformal and rectifiable, then the following is true |Pn(z)|c(L)nd(z,L)PnA2(G)|Φ(z)|n+1,zΩ, for arbitrary Pnn, where c(L)>0 is a constant depended only on L and d(z,L):= inf{|ζz|: ζL}.

In this paper, we continue the study of the problem on pointwise estimates of the derivatives |Pn(z)| in unbounded regions and estimate the following type: (8) |Pn(z)|ηn(L,h,p,z)Pnp,zΩ,(8) where ηn(L,h,p,z) as n.

Results, analogously to (Equation8) for arbitrary Pnn a different weight function h, an unbounded region and some norms were obtained in [Citation3,Citation6Citation19; Citation20, p.418–428; Citation21,Citation22] and the others.

To get an estimate for the |Pn(z)| on the C, we will need an estimate for the |Pn(z)| in the bounded region G¯. To do this, we will use estimates Bernstein–Markov–Nikolsky for |Pn(z)|, zG¯ as follows: (9) Pnλn(L,h,p)Pnp,(9) where λn:=λn(G,h,p)>0, λn as n.

Estimates of type (Equation9) for the arbitrary Pnn were studied in [Citation4,Citation15,Citation23Citation31;Citation20, p. 418–428;Citation21,Citation32;Citation33, Sect. 5.3;Citation34, p.122–133;Citation35,Citation36] and references therein.

Therefore, combining estimates (Equation8) and (Equation9), we obtain (10) |Pn(z)|c(L,pPnp{λn(L,h,p),zG¯R,R>1,ηn(L,h,p,d(z,L)|Φ(z)|n+1),zΩR,(10) where c(L,p)>0 is a constant independent of n, h, Pn, and λn(L,h,p),  ηn(.) as n.

In this work, we study problem (Equation10) for regions bounded by the piecewise Dini-smooth curve having exterior and interior zero angles.

Let us give the necessary definitions and notations.

Let S be a rectifiable Jordan curve (or arc) and z=z(s), s[0, |S|], |S|:=mes S, its natural representation.

Definition 1.1

[Citation37, p.48;Citation38, p.32]

A Jordan curve (arc) S  is called Dini-smooth, if it has a parametrization z=z(s), 0s|S|, such that z(s)0, 0s|S| and |z(s2)z(s1)|<g(s2s1), s1<s2, where g is an increasing function for which 01g(x)xdx<.

Now, we will define a new class of regions with a piecewise Dini-smooth boundary which has at the boundary points corners, and interior and exterior cusps simultaneously.

For sufficiently small ϵ1>0 and for each j=1,2, we define fj:[0,ϵ1]R twice differentiable functions such that fj(0)=0, fj(k)(x)>0, x>0 and k=0,1,2.

Throughout this work, c,c0,c1,c2, indicate positive, and ϵ0,ϵ1,ϵ2, are sufficiently small positive constants, different in different ratios, depending on G and not essential for this case parameter. For any k0 and m>k, notations j=k,m¯   denote j=k,k+1,,m.

Definition 1.2

[Citation3]

We say that a Jordan region GPDS(λi;fj), 0<λi2,i=1,m1¯, fj=fj(x), j=m1+1,m¯, if L=G consists of a union of a finite number of Dini-smooth arcs {Lj}j=0m, connecting at  the points {zj}j=0mL such that L is locally Dini-smooth at z0L {zj}j=1m and

  1. for every point ziL, i=1,m1¯, m1m,  G has exterior (with respect to G¯) angles  λiπ, 0<λi2, at the corner zi;

  2. for every point zjL, j=m1+1,m¯, in the local x- and y-axis co-ordinate system with origin at zj , the following is fulfilled:

    ( b1)

    {z=x+iy:|z|<ϵ1,  c1fj(x)yc2fj(x), 0xϵ1}Ω¯,

    ( b2)

    {z=x+iy:|z|<ϵ1,  |y|ϵ2x, 0xϵ1}G¯, for some constants <c1<c2<+, 0<ϵi<1, i=1,2.

For any zC and sufficiently small ϵ1>0,  let K(z,fj,ϵ1):={z=x+iy:0xϵ1, c1fj(x)yc2fj(x)}, for some constants <c1<c2<+,0<ϵ1<1. Let f(x):=fj0(x), where j0,m1+1j0m, is chosen such that K(zj,fj0,ϵ1)K(zj,fj,ϵ1) for all  m1+1jm and sufficiently small ϵ1>0.

As can be seen from Definition 1.2, each region GPDS(λi;fj) may have λiπ, 0<λi2, exterior angles (when λi=2  interior zero angles), ziL, i=1,m1¯, and external zero angles at the zjL, j=m1+1,m¯, where two boundary arcs join under the fj(x)-tangency. If G hasn't such angles (m1=m=0,), we will write GDS; if G has only λiπ, 0<λi2, i=1,m¯1, exterior angles (when λi=2  interior zero angles) (m1=m1), we will write G PDS(λi;0); if G has only exterior zero angles (m1=0 and m1), we will write GPDS(1;fj).

Throughout this work, we will assume that the points {zj}j=1mL defined in (Equation1) and Definition 1.2 are identical. Without loss of generality, we assume that these points on the curve L=G are located in the positive direction such that G  has  λjπ, 0<λj2, j=1,m1¯, exterior angles (when λj=2 interior zero angles (interior cusps)) at the points {zj}j=1m1, m1m,  and has exterior zero angles (exterior cusps) at the points {zj}j=m1+1m and wj:=Φ(zj).

We introduce some notations. For clarity of results, we will consider the cases when L has two singular points z1L and z2L (i.e. m1=1, m=2). The case m12, m3 can be given similarly. Let us denote λ~k:=max{1;λk},  γk=max{0;γk}, k=1,2; λˆ:=max{λ~1;λ~2} ; γˆ:={γ1;γ2}, γˆ:={γ1;γ2} ; α:=min{α1, α2}. Further, for 0<δj<δ0:=14min{|zizj|:i,j=1,2,,l, ij}, let Ω(zj, δj):=Ω{z:|zzj|δj}; δ:=min1jlδj; for L=G, we put U(L,δ):=ζLU(ζ, δ)-infinite open cover of the curve L;UN(L,δ):= j=1NUj(L,δ)U(L,δ)-finite open cover of the curve L;Ω(δ):=Ω(L,δ):=ΩUN(L,δ),  Ωˆ:=Ω  Ω(δ); ΩR(δ):=Ω(LR,δ):=ΩRUN(LR,δ),  ΩˆR:=ΩR  ΩR(δ).

2. Main results

Theorem 2.1

Let p>1; GPDS(λ1;cx1+α2), for some  0<λ12, α2>0; h(z) be defined by (Equation1) for j = 2. Then, for each nN  and arbitrary Pnn, we have   (11) |Pn(z)|c1|Φ2(n+1)(z)|d(z,L)Pnp{Dn(1)+Dn(2),zΩR(δ),En,zΩˆR(δ),(11) where c1=c1(L,p)>0 is the constant independent of z and n, c defined as in Definition 1.2 and Dn(1):={n(γ1+1)pλ~1,γ1γ2+1(1+α2)λ~11,γ2(1+α2)λ~11,n(γ2+1)p(1+α2),0<γ1<γ2+1(1+α2)λ~11,γ2(1+α2)λ~11,n1pλ~1,1<γ1<0,1<γ2<(1+α2)λ~11;Dn(2):={n(γ1+1p)λ~1,γ1>p1+γ2+1p(1+α2)λ~1,γ2p1,nλ~1+(γ2+1p1)11+α2,p1<γ1p1+γ2+1p(1+α2)λ~1,γ2>p1,(lnn)11p,γ1,γ2=p1,1,1<γ1,γ2<p1;En:={n(γ1+1p1)λ~1+n(γ2+1p1)11+α2,γ1,γ2>p1,(lnn)11p,{if γ1=p1,1<γ2p1,or 1<γ1p1,γ2=p1,1,1<γ1,γ2<p1.

From this theorem, two special cases can be distinguished: the region G has only an exterior non-zero (interior zero) angle or an exterior zero angle. We present the following corollaries separately.

Corollary 2.1

Let p>1; GPDS(λ1;λ2), for some 0<λ1,λ22; h(z) be defined by (Equation1) for j=2. Then, for each nN  and arbitrary Pnn, we have (12) |Pn(z)|c2|Φ2(n+1)(z)|d(z,L)Pnp{Dn,1(1)+Dn,2(1),zΩR(δ),En,1zΩˆR(δ),(12) where c2=c2(L,p)>0 is a constant independent of z and n, and  Dn,1(1):=n(γˆ+1)pλˆ; Dn,2(1):={nγˆ+1pλˆ,γ1,γ2>p1,nλˆ(lnn)11p,{if γ1=p1,1<γ2p1,or 1<γ1p1,γ2=p1,nλˆ,1<γ1,γ2<p1;En,1:={n(γˆ+1p1)λˆ,γ1,γ2>p1,(lnn)11p,{if γ1=p1,1<γ2p1,or 1<γ1p1,γ2=p1,1,1<γ1,γ2<p1.

Corollary 2.2

Let p>1; GPDS(cx1+α1;cx1+α2), for some α1,α2>0; h(z) be defined by (Equation1) for j = 2. Then, for each nN  and arbitrary Pnn, we have   (13) |Pn(z)|c3|Φ2(n+1)(z)|d(z,L)Pnp{Dn,1(2)+Dn,2(2),zΩR(δ),En,2,zΩˆR(δ),(13) where c3=c3(L,p)>0 is the constant independent of z and n, c defined as in Definition 1.2 and  Dn,1(2):=n(γˆ2+1)p(1+α);Dn,2(2):={nγˆ+1p(1+α),γ1,γ2>p1,n11+α(lnn)11p,if γ1=p1,1<γ2p1,or 1<γ1p1,γ2=p1,n11+α,1<γ1,γ2<p1;En,2:={n(γˆ+1p1)11+α,γ1,γ2>p1,(lnn)11p,{if γ1=p1,1<γ2p1,or 1<γ1p1,γ2=p1,1,1<γ1,γ2<p1.

Now, we will find an estimate for |Pn(z)| for zG¯.

Theorem 2.2

Let p>1; GPDS(λ1;cx1+α2), for some  0<λ12, α2>0; h(z) be defined by (Equation1) for j = 2. Then, for each nN  and arbitrary Pnn, we have (14) Pnc4Pnp[Fn,1+Fn,2],(14) where c4=c4(L,p)>0  is the constant independent of z and n, c defined as in Definition 1.2 and Fn,1:=n((γ1+1)p+1)λ~1;Fn,2:={nγ2+1p(1+α2)+α2p(1+α2)+λ~1,1<p<2+γ21+α2,nλ~1+11p(lnn)11p,p=2+γ21+α2,nλ~1+11p,p>2+γ21+α2.

Corollary 2.3

Let p>1; GPDS(λ1;λ2), for some 0<λ1,λ22; h(z) be defined by (Equation1) for j=2. Then, for each nN  and arbitrary Pnn, we have (15) Pnc5n((γˆ+1)p+1)λˆPnp,(15) where c5=c5(L,p)>0 is the constant independent of z and n.

Corollary 2.4

Let p>1; GPDS(cx1+α1;cx1+α2), for some α1,α2>0; h(z) be defined by (Equation1) for j = 2. Then, for each nN and arbitrary Pnn, we have (16) Pnc6Pnp{nγˆ+1p(1+α)+αp(1+α)+1,1<p<2+γˆ1+α2,n21p(lnn)11p,p=2+γ11+α2=2+γ21+α2,n21p,p>2+γˆ1+α2,(16) where c6=c6(L,p)>0 is the constant independent of z and n, c defined as in Definition 1.2.

Remark 2.1

Estimates (Equation14) and, consequently, (Equation15), (Equation16) are sharp.

Combining Theorems 2.1 and 2.2, we obtain:

Theorem 2.3

Let p>1; GPDS(λ1;cx1+α2), for some 0<λ12 and α2>0; h(z) be defined as in (Equation1). Then, for each nN  and arbitrary Pnn, we have |Pn(z)|c7Pnp{|Φ2(n+1)(z)|d(z,L){Dn(1)+Dn(2),zΩR(δ),En,zΩˆR(δ),Fn,1+Fn,2,zG¯R, where c7=c7(L,p)>0 is the constant independent of z and n, c defined as in Definition 1.2; Dn(k), En; Fn,k, k=1,2, are defined as in (Equation11) and (Equation14), respectively.

Analogously to Theorem 2.3, from Corollaries 2.1–2.3 and 2.2–2.4, we can write estimates in the whole plane for the cases GPDS(λ1;λ2), 0<λ1,λ22, and GPDS(cx1+α1;cx1+α2), α1,α2>0.

3. Some auxiliary results

For the nonnegative a>0 and b>0, we will use the notations ‘ab’, if acb and ‘ab ’, if  c1abc2a, for some constants c, c1, c2 (independent of a and b), respectively. In the literature, there are definitions of quasiconformal curves (see, e.g. [Citation37, p.286;Citation39;Citation40, p.97;Citation41]) in various versions. Let us give one of them in the variant we need [Citation41]:

Definition 3.1

The Jordan curve (or arc) L is called K-quasiconformal  (K1), if there is a K-quasiconformal mapping f  of the region DL such that f(L) is a circle (or line segment).

Let F(L) denote the set of all sense preserving plane homeomorphisms f of the region DL such that f(L) is a line segment (or circle), and let KL:=inf{K(f):fF(L)}, where K(f) is the maximal dilatation of such mapping f. Then L is a quasiconformal, if KL<, and L is a K-quasiconformal, if KLK.

It is well known that quasiconformal curves may not be rectifiable [Citation42]. The piecewise Dini-smooth curve (or arc) (without cusps) is quasiconformal [Citation39, p.100].

Lemma 3.1

[Citation43,Citation44]

Let L be a K-quasiconformal curve, z1L, z2,z3Ω{z:|zz1|d(z1,LR01)}; wj=Φ(zj), (z2,z3G{z:|zz1|d(z1,LR0)}; wj=φ(zj)), j=1,2,3. Then,

(a)

|z1z2||z1z3| and |w1w2||w1w3| are equivalent. Therefore, |z1z2||z1z3| and |w1w2||w1w3| also are equivalent;

(b)

if  |z1z2||z1z3|, then |w1w3w1w2|K2|z1z3z1z2||w1w3w1w2|K2,

where R0=R0(G)>1 is constant.

Recall that for 0<δj<δ0:=14min{|zizj|:i,j=1,2,,m, ij}, we put  Ω(zj, δj):=Ω{z:|zzj|δj}; δ:=min1jmδjΩ(δ):=j=1mΩ(zj, δ), Ωˆ:=Ω  Ω(δ).  Additionally, let  Δj:=Φ(Ω(zj, δ)), Δ(δ):=j=1mΦ(Ω(zj, δ)), Δˆ(δ):=ΔΔ(δ). Let wj:=Φ(zj) and for φj:=argwj, j=1,2,, m, we put Δj:={t=Reiθ:R>1, φj1+φj2 θ<φj+φj+12}, where  φ0φm, φ1φm+1; Ωj:=Ψ(Δj), Lj:=LΩ¯j,i=1,2,, m. Clearly,  Ω=j=1mΩj.LRj:=LRΩ¯j. Fi:=Φ(Li)=Δ¯i {τ:|τ|=1}, FRi:=Φ(LRi)=Δ¯i {τ:|τ|=R}, i=1,m¯.

We will often use the following estimate for the derivatives of Ψ [Citation45, Th.2.8]: (17) |Ψ(τ)|d(Ψ(τ),L)|τ|1.(17) According to the two results [Citation37, p.41–58] and [Citation38, p.32–36] and estimate (Equation17), we have the following:

Lemma 3.2

Let a Jordan region GPDS(λj;0),0<λj2,j=1,m1¯. Then,

(i)

for any w Δj, |Ψ(w)Ψ(wj)||wwj|λj, |Ψ(w)||wwj|λj1;

(ii)

for any wΔ¯\Δj, |Ψ(w)Ψ(wj)||wwj|, |Ψ(w)|1.

4. Proofs

Proof

Proof of Theorem  2.1

Let GPDS(λ1;f2), for some 0<λ12 and f2(x)=cx1+α2, α2>0; h(z) be defined in (Equation1). For zΩ, let us denote:   (18) Tn(z):=Pn(z) Φn+1(z).(18) Taking the derivative, we obtain Pn(z)=Φn+1(z)[Tn(z)Pn(z)(1Φn+1(z))],zΩ. Let us write the Cauchy integral representation for unbounded region Ω for Tn(z) and (1Φn+1(z)), respectively: Tn(z)=12πiLTn(ζ)dζ(ζz)2 =12πiLPn(ζ) Φn+1(ζ)dζ(ζz)2,zΩR, and (1Φn+1(z))=12πiL1Φn+1(ζ)dζ(ζz)2,zΩR. Then Pn(z)=Φn+1(z)[12πiLPn(ζ) Φn+1(ζ)dζ(ζz)2+Pn(z)2πiL1Φn+1(ζ)dζ(ζz)2], and therefore, (19) |Pn(z)||Φn+1(z)|2π×[L|Pn(ζ) Φn+1(ζ)||dζ||ζz|2+|Pn(z)|L|dζ||Φn+1(ζ)||ζz|2]|Φn+1(z)|[L|Pn(ζ)||dζ||ζz|2+|Pn(z)|L|dζ||ζz|2]|Φn+1(z)|[1d(z,L)L|Pn(ζ)||dζ||ζz|+|Pn(z)|L|dζ||ζz|2],(19) since |Φ(ζ)|=1, for ζL.

Denote by (20) An(z):=L|Pn(ζ)||dζ||ζz|;Bn(z):=L|dζ||ζz|2,(20) and estimate these integrals separately.

To estimate An(z), we first multiply and divide the integrand by h1p(ζ), then apply Hölder's inequality: (21) An(z)Pnp(L|dζ|hqp(ζ)|ζz|q)1q,1p+1q=1.(21) Denote by Jn(z)  the last integral, we obtain (22) [Jn(z)]q:=L|dζ|hqp(ζ)|ζz|qL1|dζ||ζz1|qγ1p|ζz|q+L2|dζ||ζz2|qγ2p|ζz|q=:Jn,11(z)+Jn,22(z).(22) For ease of calculation, we assume that z1=1, z2=1; (1,1)G and let the local co-ordinate axis in Definition 1.2 be parallel to x-axis and  y-axis in the co-ordinate system; L=L+L, where L+:={zL:Imz0}, L:={zL:Imz<0}; let w±:={w=eiθ:θ=φ1±φ22},  z±Ψ(w±), li±(zi,z±) denote the arcs, connected the points zi which z±, respectively; | li±|:=mes li±(zi,z±), i=1,2. As a point, z0L+ can be taken as an arbitrary fixed point . Then, from (Equation21) and (Equation22), we have (23) An(z)Pnp{[Jn,11(z)]1q+[Jn,22(z)]1q},(23) where Jn,11(z):=L1|dζ||ζz1|γ1(q1)|ζz|q;Jn,22(z):=L2|dζ||ζz2|γ2(q1)|ζz|q. For estimation of the last integrals, we define the following notations: R=1+1n; di,R:=d(zi,LR);

E11,±:={ζL1: |ζz1|<c1d1,R}E21,±:={ζL1: c1d1,R|ζz1|| l1±|}, E12,±:={ζL2: |ζz2|<c2d2,R}, E22,±:={ζL2: c2d2,R|ζz2|| l2±|}; In,ki,±(z):=In,ki(Eki,±):=Eki,±|dζ||ζzi|γi(q1)|ζz|q ;i,k=1,2.

Given these designations, from (Equation23), we have (24) An(z)Pnpi=12[In,1i,±(z)+In,2i,±(z)]1q,i=1,2.(24) According to (Equation19) and (Equation20), it suffices to estimate the integrals In,ki,± for each i = 1, 2 and k=1,2. 

Taking into account the positive and negative values of γi, we will make separate estimates for Jn,21.

  1. Let zΩR(δ). Denote by (Eki,±)1:={ζEki,±: |ζzi|< |ζz|},(Eki,±)2:= Eki,±  (Eki,±)1;[In,ki,±(z)]1:=In,ki[(Eki,±)1]:=(Eki,±)1|dζ||ζzi|γi(q1)+q;[In,ki,±(z)]2:=In,ki [(Eki,±)2]:=(Eki,±)2|dζ||ζz|γi(q1)+q.

    (1.1)

    Let γ10 and  γ20. In this case, we obtain (25) [In,11,±(z)]1=(E11,±)1|dζ||ζz1|γi(q1)+q0c1d1,Rdssγ1(q1)+qd1,R(γ1+1)(q1);[In,11,±(z)]2=(E11,±)2|dζ||ζz|γi(q1)+qd1,R[(γ1+1)+q]mes(E11,±)d1,R(γ1+1)(q1);In,11,±(z)=[In,11,±(z)]1+[In,11,±(z)]2d1,R(γ1+1)(q1);[In,21,±(z)]1(E21,±)1|dζ||ζz1|γ1(q1)+qc1d1,R| l1±|dssγ1(q1)+qd1,R(γ1+1)(q1);[In,21,±(z)]2(E21,±)2|dζ||ζz|γ1(q1)+qd1,R(γ1+1)(q1);In,21,±(z)=[In,21,±(z)]1+[In,21,±(z)]2d1,R(γ1+1)(q1).(25) Similar estimates for Jn,22(z) in the neighbourhood of the point z2 is given as (26) [In,12,±(z)]1(E12,±)1|dζ||ζz2|γ2(q1)+q0c2d2,Rdssγ2(q1)+qd2,R(γ1+1)(q1);[In,12,±(z)]2(E12,±)2|dζ||ζz|γ2(q1)+qd2,R[(γ2+1)+q]mes(E12,±)d2,R(γ2+1)(q1);In,12,±(z)=[In,12,±(z)]1+[In,12,±(z)]2d2,R(γ1+1)(q1);[In,22,±(z)]1(E22,±)1|dζ||ζz2|γ2(q1)+qc2d2,R| l2±|dssγ2(q1)+qd2,R(γ2+1)(q1);[In,22,±(z)]2(E22,±)2|dζ||ζz|γ2(q1)+qc2d2,R| l2±|dssγ2(q1)+qd2,R(γ2+1)(q1);In,22,±(z)=[In,22,±(z)]1+[In,22,±(z)]2d2,R(γ1+1)(q1).(26) Let γ1<0 and  γ2<0. Then, analogously to  (Equation25) and (Equation26), we obtain (27) In,11,±(z)=E11,±|ζz1|γ1(q1)|dζ||ζz|qd1,Rγ1(q1)qmesE11,±d1,R(γ11)(q1);In,21,±(z)E21,±|ζz1|γ1(q1)|dζ||ζz|qc1d1,R| l1±|dssqd1,R(q1);(27) and (28) In,12,±(z)E12,±|ζz2|γ2(q1)|ζz|q|dζ|d2,R(γ2)(q1)mesE12,±d2,R(γ21)(q1);In,22,±(z)E22,±|ζz2|γ2(q1)|ζz|q|dζ|c2d2,R| l2±|dssqd2,R(q1).(28) Therefore, in this case, from (Equation24) to (Equation28), we obtain (29) An(z)Pnp[d1,R(γ1+1)p+d2,R(γ2+1)p],(29) where γi:=max{0;γi,i=1,2}.

Now, let us estimate Bn(z):=L|dζ||ζz|2. By notation from (Equation23), L=L±=E11,±E21,±E12,±E22,± and so (30) Bn(z)=i,k=12Eki,+Eki,|dζ||ζz|2=:M(Eki,+)+M(Eki,).(30) The estimation of the integrals M(Eki,+) and M(Eki,), i,k=1,2, is similar, then we will estimate only M(Eki,+): M(E11,+)=E11,+|dζ||ζz|2=|z1z|c1d1,Rdss21d1,R;M(E21,+)=E21,+|dζ||ζz|2=d1,R| l1±|dss21d1,R;M(E12,+)=E12,+|dζ||ζz|2=0|z2z2+|dss20c1d2,Rdss21d2,R;M(E22,+)=E22,+|dζ||ζz|2=|z2z2+|| l2±|dss2c1d2,R| l2±|dss21d2,R. Therefore, (31) Bn(z)1d1,R+1d2,R.(31) Comparing (Equation19), (Equation20), (Equation29) and (Equation31), we have (32) |Pn(z)||Φn+1(z)|[1d(z,L)Pnp(d1,R(γ1+1)p+d2,R(γ2+1)p)+|Pn(z)|(1d1,R+1d2,R)].(32) According to [Citation3, Th.1.1], we have (33) |Pn(z)|cBn,1d(z,L)Pnp|Φ(z)|n+1,(33) where c=c(G,p,γi)>0, i=1,p¯, constant independent of n and z, and (34) Bn,1:={d1,R(γ1+1p1)+d2,R(γ2+1p1),γ1,γ2>p1,ln1d1,R+ln1d2,R,γ1=γ2=p1,1,γ1,γ2<p1.(34) Substituting (Equation33) into (Equation32), we obtain (35) |Pn(z)||Φ2(n+1)(z)|d(z,L)Pnp[(d1,R(γ1+1)p+d2,R(γ2+1)p)+Bn,1(1d1,R+1d2,R)].(35)

According to Lemma 3.2, for point z1, we get (36) d1,Rnλ~1.(36) For estimate d2,R, we put  zRLR: d2,R=|z2zR| ζ±L±:d(zR,L2L±):=d(zR,L+); z2± :=ζL2: |ζz2|=c2d2,R. Then, from Lemma 3.1, we obtain (37) dR±:=d(zR,L2L±)|zRz2±|d2,R1+α2.(37) In this, d2,R=(dR±)11+α2. On the other hand, using Lemma 3.2 and [Citation46, Corollary 2], we obtain dR±n1. Therefore, (38) d2,Rn11+α2.(38) Applying (Equation36) and (Equation38), for Bn,1 in (Equation33), we obtain (39) Bn,1{n(γ1+1p1)λ~1+n(γ2+1p1)11+α2,γ1,γ2>p1,(lnn)11p,{if γ1=p1,1<γ2p1,or 1<γ1p1,γ2=p1,1,1<γ1,γ2<p1.(39) From (Equation35) to (Equation39), we obtain |Pn(z)||Φ2(n+1)(z)|d(z,L)Pnp[(n(γ1+1)pλ~1+n(γ2+1)p(1+α2))+Bn,1(nλ~1+n11+α2)]|Φ2(n+1)(z)|d(z,L)Pnp ×[{n(γ1+1)pλ~1,γ1γ2+1(1+α2)λ~11,γ2(1+α2)λ~11,n(γ2+1)p(1+α2),0<γ1<γ2+1(1+α2)λ~11,γ2(1+α2)λ~11,n1pλ~1,1<γ1<0,1<γ2<(1+α2)λ~11,+nλ~1Bn,1,]|Φn+1(z)|d(z,L)Pnp ×[{n(γ1+1)pλ~1,γ1γ2+1(1+α2)λ~11,γ2(1+α2)λ~11,n(γ2+1)p(1+α2),0<γ1<γ2+1(1+α2)λ~11,γ2(1+α2)λ~11,n1pλ~1,1<γ1<0,1<γ2<(1+α2)λ~11,+{n(γ1+1p)λ~1+nλ~1+(γ2+1p1)11+α2,γ1,γ2>p1,(lnn)11p,{if γ1=p1,1<γ2p1or 1<γ1p1,γ2=p11,γ1,γ2<p1,]|Φ2(n+1)(z)|d(z,L)Pnp×[{n(γ1+1)pλ~1,γ1γ2+1(1+α2)λ~11,γ2(1+α2)λ~11,n(γ2+1)p(1+α2),0<γ1<γ2+1(1+α2)λ~11,γ2(1+α2)λ~11,n1pλ~1,1<γ1<0,1<γ2<(1+α2)λ~11,+{n(γ1+1p)λ~1,γ1>p1+γ2+1p(1+α2)λ~1,γ2>p1,nλ~1+(γ2+1p1)11+α2p1<γ1p1+γ2+1p(1+α2)λ~1,γ2>p1,n(γ1+1p)λ~1,γ1>p1+γ2+1p(1+α2)λ~1,γ2=p1,(lnn)11p1<γ1p1+γ2+1p(1+α2)λ~1,γ2=p1,(lnn)11pγ1=p1,1<γ2<p1,1,1<γ1<p1,1<γ2<p1,] (40) |Φ2(n+1)(z)|d(z,L)Pnp×[{n(γ1+1)pλ~1,γ1γ2+1(1+α2)λ~11,γ2(1+α2)λ~11,n(γ2+1)p(1+α2),0<γ1<γ2+1(1+α2)λ~11,γ2(1+α2)λ~11,n1pλ~1,1<γ1<0,1<γ2<(1+α2)λ~11,+{n(γ1+1p)λ~1,γ1>p1+γ2+1p(1+α2)λ~1,γ2p1,nλ~1+(γ2+1p1)11+α2,p1<γ1p1+γ2+1p(1+α2)λ~1,γ2>p1,(lnn)11p,1<γ1p1,1<γ2p1,1,1<γ1<p1,1<γ2<p1.](40) Therefore, we obtain (41) |Pn(z)||Φ2(n+1)(z)|d(z,L)Pnp[Dn(1)+Dn(2)],(41) where Dn(1):={n(γ1+1)pλ~1,γ1γ2+1(1+α2)λ~11,γ2(1+α2)λ~11,n(γ2+1)p(1+α2),0<γ1<γ2+1(1+α2)λ~11,γ2(1+α2)λ~11,n1pλ~1,1<γ1<0,1<γ2<(1+α2)λ~11;Dn(2):={n(γ1+1p)λ~1,γ1>p1+γ2+1p(1+α2)λ~1,γ2p1,nλ~1+(γ2+1p1)11+α2,{p1<γ1p1+γ2+1p(1+α2)λ~1,γ2>p1,(lnn)11p,γ1,γ2=p1,1,1<γ1,γ2<p1.

Therefore, we complete the proof for the point zΩ(δ).

(2)

Let zΩˆR(δ).

(2.1)

Let γ10 and  γ20. In this case, we obtain (42) In,11,±(z)E11,±|dζ||ζz1|γ1(q1)0c1d1,Rdssγ1(q1){d1,R1γ1(q1),γ1(q1)>1,ln1d1,R,γ1(q1)=1,1,γ1(q1)<1;In,21,±(z)E21,±|dζ||ζz1|γ1(q1)c1d1,R| l1±|dssγ1(q1){d1,R1γ1(q1),γ1(q1)>1,ln1d1,R,γ1(q1)=1,1,γ1(q1)<1;In,11,±(z)+In,21,±(z){d1,R1γ1(q1),γ1(q1)>1,ln1d1,R,γ1(q1)=1,1,γ1(q1)<1,(42) and in similarly, (43) In,12,±(z)E12,±|dζ||ζz2|γ2(q1)0c2d2,Rdssγ2(q1){d2,R1γ2(q1),γ2(q1)>1,ln1d2,R,γ2(q1)=1,1,γ2(q1)<1;In,22,±(z)E22,±|dζ||ζz2|γ2(q1)c2d2,R| l2±|dssγ2(q1){d2,R1γ2(q1),γ2(q1)>1,ln1d2,R,γ2(q1)=1,1,γ2(q1)<1;In,12(z)+In,22,±(z){d2,R1γ2(q1),γ2(q1)>1,ln1d2,R,γ2(q1)=1,1,γ2(q1)<1.(43) Let γ1<0 and γ2<0. Then, analogous to estimates (Equation25) and (Equation26), we obtain (44) In,11,±(z)E11,±|ζz1|(γ1)(q1)|dζ|d1,R(γ1)(q1)mesE111,In,21,±(z)E21,±|ζz1|(γ1)(q1)|dζ|| l1±| (γ1)(q1)+11,In,11(z)+In,21(z)1;(44) and (45) In,12,±(z)E12,±|ζz2|(γ2)(q1)|dζ|d2,R(γ2)(q1)mesE12,±1,In,22,±(z)E22,±|ζz2|(γ2)(q1)|dζ|| l2±| (γ2)(q1)+11,In,12,±(z)+In,22,±(z)1.(45) Therefore, in this case, from (Equation24) to (Equation28), we obtain (46) An(z)Pnp{d1,R1γ1+1p+d2,R1γ2+1p,γ1,γ2>p1,(ln1d1,R)11p+(ln1d2,R)11p,γ1,γ2=p1,1,γ1,γ2<p1,(46) (47) Bn(z)=L|dζ||ζz|2L|dζ|1.(47) Comparing (Equation19), (Equation20), (Equation30) and (Equation31), we have (48) |Pn(z)||Φn+1(z)|[Pnpd(z,L)Bn,1+|Pn(z)|],(48) where Bn,1 is defined as in (Equation39).

According to (Equation39), from (Equation48), we have (49) |Pn(z)||Φ2(n+1)(z)|d(z,L)PnpBn,1.(49) Therefore, we complete the proof of the points zΩˆR(δ),  and hence, the proof of Theorem 2.1.

Proof

Proof of Corollaries 2.1 and 2.2

(1) Let p>1; GPDS(λ1;λ2) for some 0<λ1,λ22;h(z) be defined by (Equation1) for j = 2. From (Equation35), (Equation34), and (Equation36), for the points zΩR(δ), we obtain |Pn(z)||Φ2(n+1)(z)|d(z,L)Pnp[(n(γ1+1)pλ~1+n(γ2+1)pλ~2)+Bn,1(nλ~1+nλ~2)]|Φ2(n+1)(z)|d(z,L)Pnp×[n(γˆ+1)pλˆ+{nγˆ+1pλˆ,γ1,γ2>p1,nλˆ(lnn)11p,{if γ1=p1,1<γ2p1,or 1<γ1p1,γ2=p1,nλˆ,1<γ1,γ2<p1,] where λˆ:=max{λ~1;λ~2}, γˆ:={γ1;γ2}; γˆ:={γ1;γ2}, and for the points zΩˆR(δ), from (Equation49) and (Equation39), we obtain |Pn(z)||Φ2(n+1)(z)|d(z,L)Pnp{n(γˆ+1p1)λˆ,γ1,γ2>p1,(lnn)11p,{if γ1=p1,1<γ2p1,or 1<γ1p1,γ2=p1,1,1<γ1,γ2<p1. (2) Let p>1; GPDS(cx1+α1;cx1+α2), for some α1,α2>0; h(z) be defined by (Equation1) for j = 2. According to (Equation35), (Equation34), and (Equation38), we obtain |Pn(z)||Φ2(n+1)(z)|d(z,L)Pnp[(n(γ1+1)p(1+α1)+n(γ2+1)p(1+α2))+Bn,1(n11+α1+n11+α2)]|Φ2(n+1)(z)|d(z,L)Pnp×[n(γˆ2+1)p(1+α)+{nγˆ+1p(1+α),γ1,γ2>p1,n11+α(lnn)11p,{if γ1=p1, 1<γ2p1,or 1<γ1p1, γ2=p1,n11+α,1<γ1,γ2<p1,] where α:={α1;α2} and, for the point zΩˆR(δ), from (Equation49) and (Equation39), we obtain |Pn(z)||Φ2(n+1)(z)|d(z,L)Pnp×{n(γˆ+1p1)11+α,γ1,γ2>p1,(lnn)11p,{if γ1=p1,1<γ2p1;or 1<γ1p1,γ2=p1,1,1<γ1,γ2<p1.

Proof

Proof of Theorem 2.2

Let GPDS(λ1;cx1+α2), for some 0<λ12, and α2>0. Let  zL be a arbitrary fixed point and B(z,d(z,LR):={t:|tz|<d(z,LR)}. The Cauchy integral representation for the derivatives of Pn(z) is given as (50) Pn(z)=12πiB(z,d(z,LR)Pn(ζ)dζ(ζz)2,zL.(50) Here, we have (51) |Pn(z)|=12πB(z,d(z,LR)|Pn(ζ)||dζ||ζz|2 maxzG¯R|Pn(ζ)|supzL{1d(z,LR)}.(51) According to [Citation3, Cor.1.3] and applying (Equation5), we have (52) maxzG¯R|Pn(ζ)|PnC(G¯)Pnp×[n(γ1+1)λ~1p+{nγ2+1p(1+α2)+α2p(1+α2),1<p<2+γ21+α2,(nlnn)11p,p=2+γ21+α2,n11p,p>2+γ21+α2.](52) On the other hand, from (Equation36) and (Equation38), we have supzL{1d(z,LR)}sup{supzL1{1d(z,LR)};supzL2{1d(z,LR)}}nλ~1. Therefore, |Pn(z)|Pnp×[n((γ1+1)p+1)λ~1+{nγ2+1p(1+α2)+α2p(1+α2)+λ~1,1<p<2+γ21+α2,nλ~1+11p(lnn)11p,p=2+γ21+α2,nλ~1+11p,p>2+γ21+α2,] and the proof of Theorem 2.2 is complete.

4.1. Proof of remark

Proof.

The proof of the accuracy of inequalities (Equation14)–(Equation16) can be divided into two parts: (i) PnnPn; (ii) PnμnPnp. The first inequality is the well-known sharp Markov inequality. The sharpness of inequality (ii) can be verified in the following examples (see, [[Citation16],[Citation17, Rm 2.9]]). Let Tn(z)=1+z++zn, h(z)= h0(z), h(z)=|z1|γ, γ>0, L:={z:|z|=1}. Then, for any nN, there exist c1=c1(h,p)>0, c2=c2(h,p)>0 such that

  1. Tc1n1pTLp(h,L), p>1;

  2. Tc2nγ+1pTLp(h,L), p>γ+1.

5. Conclusion

So, for derivatives of arbitrary algebraic polynomial |Pn(z)| in regions with corners (including cusp points), the following estimates are found: (a) at the exterior points zΩ=CG¯ (Theorem 2.1 and Corollaries 2.1–2.2); (b) at the closed region G¯ (Theorem 2.2 and Corollaries 2.3–2.4). Based on these estimates, find the possible growth of the derivatives of the algebraic polynomial |Pn(z)| in the whole complex plane (Theorem 2.3). Additionally, the case is given when the area has only one type of corner (Corollaries 2.1–2.4).

Acknowledgments

The author thanks the reviewers for their valuable comments and advice that helped improve this work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

  • Walsh JL. Interpolation and approximation by rational functions in the complex domain. (Rhode Island, RI): AMS; 1960.
  • Hille E, Szegö G, Tamarkin JD. On some generalization of a theorem of A. Markoff. Duke Math. 1937;3:729–739.
  • Abdullayev FG, Özkartepe P. On the growth of algebraic polynomials in the whole complex plane. J Korean Math Soc. 2015;52(4):699–725.
  • Abdullayev FG. On the some properties on orthogonal polynomials over the regions of complex plane 1. Ukr Math J. 2000;52(12):1807–1817.
  • Abdullayev FG, Özkartepe P. An analogue of the Bernstein-Walsh lemma in Jordan regions of the complex plane. J Inequal Appl. 2013;2013:7 p. Article 570.
  • Stylianopoulos N. Strong asymptotics for Bergman polynomials over domains with corners and applications. Constr Approx. 2013;38:59–100.
  • Abdullayev FG, Özkartepe P. On the behavior of the algebraic polynomial in unbounded regions with piecewise Dini-smooth boundary. Ukr Math J. 2014;66(5):645–665.
  • Abdullayev FG, Özkartepe P, Gün CD. Uniform and pointwise polynomial inequalities in regions without cusps in the weighted Lebesgue space. Bull TICMI. 2014;18(1):146–167.
  • Abdullayev FG, Gün CD, Ozkartepe NP. Inequalıtıes for algebraıc polynomıals ın regıons wıth exterıor cusps. J Nonlinear Func Anal. 2015;3:1–32.
  • Abdullayev FG, Özkartepe P. Uniform and pointwise polynomial inequalities in regions with cusps in the weighted Lebesgue space. Jaen J Approx. 2015;7(2):231–261.
  • Abdullayev FG, Özkartepe NP. Polynomial inequalities in Lavrentiev regions with interior and exterior zero angles in the weighted Lebesgue space. Publ Inst Math (Beograd). 2016;100(114):209–227.
  • Abdullayev FG, Özkartepe NP. Interference of the weight and boundary contour for algebraic polynomials in the weighted Lebesgue spaces I. Ukr Math J. 2017;68(10):1574–1590. (Translated from Ukr Mat Zh. 2016;68(10):1365–1379).
  • Abdullayev FG. Polynomial inequalities in regions with corners in the weighted Lebesgue spaces. Filomat. 2017;31(18):5647–5670.
  • Abdullayev FG, Imashkyzy M, Abdullayeva G. Bernstein-Walsh type inequalities in unbounded regions with piecewise asymptotically conformal curve in the weighted Lebesgue space. J Math Sci. 2018;234(1):35–48. (Trans. from Ukr Mat Visnik. 2017;14(4):515–531).
  • Abdullayev FG, Tunc T, Abdullayev GA. Polynomial inequalities in quasidisks on weighted Bergman space. Ukr Math J. 2017;69(5):675–695.
  • Abdullayev FG, Özkartepe NP. The uniform and pointwise estimates for polynomials on the weighted Lebesgue spaces in the general regions of complex plane. Hac J Math Stat. 2019;48(1):87–101.
  • Abdullayev FG, Özkartepe P, Tunç T. Uniform and pointwise estimates for algebraic polynomials in regions with interior and exterior zero angles. Filomat. 2019;33(2):403–413.
  • Abdullayev FG, Gün CD. Bernstein-Walsh-type inequalities for derivatives of algebraic polynomials. Bull Korean Math Soc. 2022;59(1):45–72.
  • Abdullayev FG. Bernstein-Walsh-type inequalities for derivatives of algebraic polynomials in quasidiscs. OPEN Math. 2021;19:1847–1876.
  • Dzjadyk VK. Introduction to the theory of uniform approximation of function by polynomials. Moscow: Nauka; 1977.
  • Mamedhanov DI. Inequalities of S.M.Nikol'skii type for polynomials in the complex variable on curves. Soviet Math Dokl. 1974;15:34–37.
  • Özkartepe P. Uniform and pointwise polynomial estimates in regions with interior and exterior cusps. Cumhuriyet Sci J. 2018;39(1):47–65.
  • Abdullayev FG. On the some properties of the orthogonal polynomials over the region of the complex plane (Part III). Ukr Math J. 2001;53(12):1934–1948.
  • Abdullayev FG. The properties of the orthogonal polynomials with weight having singularity on the boundary contour. J Comput Anal Appl. 2004;6(1):43–59.
  • Abdullayev FG. On the interference of the weight boundary contour for orthogonal polynomials over the region. J Comput Anal Appl. 2004;6(1):31–42.
  • Abdullayev FG, Gün CD. Bernstein-Nikolskii-type inequalities for algebraic polynomials in Bergman space in regions of complex plane. Ukr Math J. 2021;73(4):513–531. (Translated from Ukr Mat Zh. 2021;73(4):439–454).
  • Andrievskii VV. Weighted polynomial inequalities in the complex plane. J Approx Theory. 2012;164(9):1165–1183.
  • Balcı S, Imashkyzy M, Abdullayev FG. Polynomial inequalities in regions with interior zero angles in the Bergman space. Ukr Math J. 2018;70(3):362–384.
  • Benko D, Dragnev P, Totik V. Convexity of harmonic densities. Rev Mat Iberoam. 2012;28(4):1–14.
  • Bernstein SN. Sur la limitation des derivees des polnomes. C R Acad Sci Paris. 1930;190:338–341.
  • Bernstein SN. On the best approximation of continuous functions by polynomials of given degree. Izd Akad Nauk SSSR I. 1952; II; 1954 (O Nailuchshem Problizhenii Nepreryvnykh Funktsii Posredstrvom Mnogochlenov Dannoi Stepeni), Sobraniye Sochinenii. 1912;1(4):11–10.
  • Jackson D. Certain problems on closest approximations. Bull Amer Math Soc. 1933;39:889–906.
  • Milovanovic GV, Mitrinovic DS, Rassias T.M. Topics in polynomials: extremal problems, inequalities, zeros. Singapore: World Scientific; 1994.
  • Nikol'skii SM. Approximation of function of several variable and imbedding theorems. New York (NY): Springer-Verlag; 1975.
  • Pritsker IE. Comparing norms of polynomials in one and several variables. J Math Anal Appl. 1997;216:685–695.
  • Szegö G, Zygmund A. On certain mean values of polynomials. J Anal Math. 1953;3(1):225–244.
  • Pommerenke C. Univalent functions. Göttingen: Vandenhoeck & Ruprecht; 1975.
  • Andrievskii VV, Blatt HP. Discrepancy of signed measures and polynomial approximation. New York (NY): Springer-Verlag; 2010.
  • Ahlfors L. Lectures on quasiconformal mappings. Princeton (NJ): Van Nostrand; 1966.
  • Lehto O, Virtanen KI. Quasiconformal mapping in the plane. Berlin: Springer Verlag; 1973.
  • Rickman S. Characterization of quasiconformal arcs. Ann Acad Sci Fenn, Ser A, Math. 1966;395:30 p.
  • Belinskii PP. General properties of quasiconformal mappings. Nauka Sib otd., Novosibirsk: Nauka; 1974 (in Russian).
  • Abdullayev FG, Andrievskii VV. On the orthogonal polynomials in the domains with K -quasiconformal boundary. Izv Akad Nauk Azerb SSR, Ser FTM. 1983;1:3–7.
  • Abdullayev FG. On the orthogonal polynomials in domains with quasiconformal boundary [dissertation (Ph.D.)]. Donetsk; 1986. p. 120.
  • Andrievskii VV, Belyi VI, Dzyadyk VK. Conformal invariants in constructive theory of functions of complex plane. Atlanta (GA)): World Federation Publ. Com; 1995.
  • Andrievskii VV. On the uniform convergence of the Bieberbach polynomials in the regions with piecewise quasiconformal boundary. In: Theory of mappings and approximation functions. Naukovo Dumka, Kyiv; 1983. p. 3–18. (in Russian).