986
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the family of integral equation involving incomplete types of I and Ī-functions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2165280 | Received 13 Sep 2022, Accepted 22 Dec 2022, Published online: 23 Jan 2023

ABSTRACT

The present article introduces and studies the Fredholm-type integral equation with an incomplete I-function (IIF) and an incomplete I¯-function (II¯F) in its kernel. First, using fractional calculus and the Mellin transform principle, we solve an integral problem involving IIF. The idea of the Mellin transform and fractional calculus is then used to analyse an integral equation using the incomplete I¯-function. This is followed by the discovery and investigation of several important exceptional cases. This article's general discoveries may yield new integral equations and solutions. The desired outcomes seem to be very helpful in resolving many real-world problems whose solutions represent different physical phenomena. And also, findings help solve introdifferential, fractional differential, and extended integral equation problems.

MATHEMATICS SUBJECT CLASSIFICATIONS::

1. Introduction

Over the last four decades, mathematicians and scientists have been attracted to fractional calculus and special functions because of their wide range of applications and significance in fields such as medical science, biological science, computer science, communication theory, fluid dynamics, viscoelasticity, diffusive transport, electrical finance networks, signal processing, probability theory, control theory, ecology, environmental science, and so on [Citation1–4].

The scope of special functions is extensive, yet it constantly expands due to the development of new issues in engineering and applied science fields. In addition, the development of the H-function and the I-function is facilitated by dissemination. Jangid et al. [Citation5] proposed the incomplete I-function and developed various integral transformations for it. A few applications are also presented [Citation6, Citation7]. The integral equation has been observed in various response-related problems, including diffusion, queuing theory, reaction-diffusion, quantum mechanics and a variety of other areas of physics, biology, and probability theory, to name a few [Citation8–10].

Fractional calculus is an augmentation of integer-order calculus and provides more accurate results than classical calculus. Therefore, it is widely used in the mathematical modelling of almost all science and engineering, medicine, and education areas [Citation11–13]. Several fractional operators are available to deal with real-world problems, such as the Riemann–Liouville integral, Caputo derivative, Caputo–Fabrizio derivatives, Weyl integral, Weyl derivatives, Atangana–Balneau derivatives, Atangana–Balneau fractional integral, Hilfer fractional derivatives, and many others.

Methods for obtaining solutions to integral equations (IE) are typically beneficial in science and engineering. That is why we choose Fredholm IE, which consists of incomplete I-function, which are extensions and generalizations of higher transcendental functions. The most commonly used functions in mathematics, physics, engineering, and mathematical biology are special cases of the incomplete I-function.

The Fredholm IE, which incorporates special functions like Hypergeometric functions, Legendre functions, and Fox H-functions, is presented and explored by many authors [Citation14–20]. We present the integral equation of the Fredholm type involving the IIF and II¯F in the kernel, which was inspired by a recent research endeavour on fractional calculus and special functions.

2. Mathematical preliminaries

The present part defines some basic definitions of the special functions and fractional operators.

Incomplete Gamma Function: The usual incomplete Gamma functions γ(c,s) and Γ(c,s) represented by Chaudhry and Zubai [Citation21] (1) γ(c,s):=0sθc1eθdθ,((c)>0;s0),(1) and (2) Γ(c,s):=sθc1eθdθ,((c)>0;s0),(2) satisfy the subsequent rule of decomposition: (3) γ(c,s)+Γ(c,s):=Γ(c),((c)>0),(3) where (c) stands for real part of the parameter c.

Moreover, if we set s = 0, then we have Γ(c,s)=Γ(c).

I-Function: Rathie [Citation22] discovered the I-function in 1997, which is defined as follows by the Mellin–Barnes kind contour integral: (4) Ir,su,v(V)=Ir,su,v[V|(Ψ1,ζ1;A1),,(Ψr,ζr;Ar)(Φ1,β1;B1),,(Φs,βs;Bs)]=12πi$Ψ(w)Vwdw,(4) where (5) Ψ(w)=i=1u{Γ(Φiβiw)}Bii=1v{Γ(1Ψi+ζiw)}Aii=v+1r{Γ(Ψiζiw)}Aii=u+1s{Γ(1Φi+βiw)}Bi.(5) The appropriate conditions for the $ contour convergence described in (Equation4) and other representations, in addition to documentation about the I-function, can be seen in [Citation22].

The Incomplete I-Functions: Now, we present a family of the incomplete I-functions [Citation23] γIr,su,v(V) and ΓIr,su,v(V), which leads to a natural generalization of a variety of I-functions: (6) γIr,su,v(V)=γIr,su,v[V|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]=12πi$Ψ(w,Y)Vwdw,(6) and (7) ΓIr,su,v(V)=ΓIr,su,v[V|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]=12πi$Φ(w,Y)Vwdw,(7) for all V0, where (8) Ψ(w,Y)={γ(1Ψ1+ζ1w,Y)}A1i=1u{Γ(Φiβiw)}Bii=2v{Γ(1Ψi+ζiw)}Aii=v+1r{Γ(Ψiζiw)}Aii=u+1s{Γ(1Φi+βiw)}Bi,(8) and (9) Φ(w,Y)={Γ(1Ψ1+ζ1w,Y)}A1i=1u{Γ(Φiβiw)}Bii=2v{Γ(1Ψi+ζiw)}Aii=v+1r{Γ(Ψiζiw)}Aii=u+1s{Γ(1Φi+βiw)}Bi.(9) The following division relation is immediately produced by the definitions (Equation6) and (Equation7) for the value of A1=1: (10) γIr,su,v[V]+ΓIr,su,v[V]=Ir,su,v[V],(for A1=1).(10) The Incomplete I¯-Function: When we fixed B1=B2==Bu=1 and Av+1=Av+2==Ar=1, then define the following new incomplete I¯-function (II¯F) [Citation5]: (11) γI¯r,su,v(V)=γI¯r,su,v[V|(Φ1,ζ1;A1:Y),(Φ2,ζ2;A2),,(Φv,ζv;Av),(Φ1,β1;1),(Φ2,β2;1),,(Φu,βu;Bu),(Φv+1,ζv+1;1),,(Ψr,ζr;1)(Φu+1,βu+1;Bu+1),,(Φs,βs;Bs)]=12πi$Ψ¯(w,Y)Vwdw,(11) and (12) ΓI¯r,su,v(V)=ΓI¯r,su,v[V|(Φ1,ζ1;A1:Y),(Φ2,ζ2;A2),,(Φv,ζv;Av),(Φ1,β1;1),(Φ2,β2;1),,(Φu,βu;Bu),(Φv+1,ζv+1;1),,(Ψr,ζr;1)(Φu+1,βu+1;Bu+1),,(Φs,βs;Bs)]=12πi$Φ¯(w,Y)Vwdw,(12) for all V0, where (13) Ψ¯(w,Y)={γ(1Ψ1+ζ1w,Y)}A1i=1u{Γ(Φiβiw)}1i=2v{Γ(1Ψi+ζiw)}Aii=v+1r{Γ(Ψiζiw)}1i=u+1s{Γ(1Φi+βiw)}Bi,(13) and (14) Φ¯(w,Y)={Γ(1Ψ1+ζ1w,Y)}A1i=1u{Γ(Φiβiw)}1i=2v{Γ(1Ψi+ζiw)}Aii=v+1r{Γ(Ψiζiw)}1i=u+1s{Γ(1Φi+βiw)}Bi.(14) It we put Y = 0 in (Equation12), then we get familiar I¯ suggest by Rathie [Citation22].

The IIF γIr,su,v(V) and ΓIr,su,v(V) identified in (Equation6) and (Equation7) appear for Y0, according to the family of restrictions provided by Rathie [Citation22], such as δ>0,|arg(V)|<12δπ,where (15) δ=i=1uBiβii=u+1sBiβi+i=1vAiζii=v+1rAiζi.(15)

Remark 2.1

Setting Y = 0, in (Equation6) and (Equation7) gives the I-Function determined by Rathie (16) ΓIr,su,v[V|(Ψ1,ζ1;A1:0),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]=Ir,su,v[V|(Ψ1,ζ1;A1),,(Ψr,ζr;Ar)(Φ1,β1;B1),,(Φs,βs;Bs)].(16)

Remark 2.2

When Ai=1,Bj=1(i=1,2,,r,j=1,2,,s) is set to (Equation6) and (Equation7), it becomes the Incomplete H-Function proposed by Srivastava (17) γIr,su,v[V|(Ψ1,ζ1;1:Y),(Ψ2,ζ2;1),,(Ψr,ζr;1)(Φ1,β1;1),(Φ2,β2;1),,(Φs,βs;1)]=γr,su,v[V|(Ψ1,ζ1:Y),(Ψ2,ζ2),,(Ψr,ζr)(Φ1,β1),(Φ2,β2),,(Φs,βs)],(17) and (18) ΓIr,su,v[V|(Φ1,ζ1;1:Y),(Φ2,ζ2;1),,(Φr,ζr;1)(Φ1,β1;1),(Φ2,β2;1),,(Φs,βs;1)]=Γr,su,v[V|(Ψ1,ζ1:Y),(Ψ2,ζ2),,(Ψr,ζr)(Φ1,β1),(Φ2,β2),,(Φs,βs)].(18)

Remark 2.3

Next, we take Y=0,Ai=1,Bj=1(i=1,2,,r,j=1,2,,s) in (Equation6). The IIF is reduced to the well-known Fox H-function, defined and illustrated as follows (19) ΓIr,su,v[V|(Ψ1,ζ1;1:0),(Ψ2,ζ2;1),,(Ψr,ζr;1)(Φ1,β1;1),(Φ2,β2;1),,(Φs,βs;1)]=Hr,su,v[V|(Ψ1,ζ1),(Ψ2,ζ2),,(Ψr,ζr)(Φ1,β1),(Φ2,β2),,(Φs,βs)].(19)

Weyl Fractional Integral: The standard definition of the Weyl fractional integral (WFI) as given by Miller and Ross [Citation24]: (20) Wuϕ(w)=1Γ(u)w(ξw)u1ϕ(ξ)dξ,((u)>0).(20) Mellin Transform: The standard definition of the Mellin transform (MT) is given as follows [Citation25, Citation26]: (21) M[ϕ(w);P]=ϕˆ(P)=0wP1ϕ(w)dw,(21) and (22) M1[ϕˆ(P);w]=ϕ(w)=12πιι+ιwPϕˆ(P)dP,(22) where (P)>0 and ∇ is constant.

Next, we provide two significant results incorporated into our main findings.

  1. The MT of IIF [Citation5] is defined as follows: (23) M{ΓIr,su,v[VV£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)];P}=VP££Ψ(P£,Y),(23) where Ψ(P£,Y) is defined in Equation (Equation8) and the terms are given in [Citation5].

  2. The MT of II¯F is defined as follows: (24) M{ΓI¯r,su,v[VV£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψv,ζv;Av),(Φ1,β1;1),(Φ2,β2;1),,(Φu,βu;Bu),(Ψv+1,ζv+1;1),,(Ψr,ζr;1)(Φu+1,βu+1;Bu+1),,(Φs,βs;Bs)];P}=VP££Φ¯(P£,Y),(24) where Φ¯(P£,Y) is defined in Equation (Equation14).

Assume that A is the space with whole functions F that satisfy and are properly characterized on R0+=[0,).

  1. FC(R0+);

  2. limx{xaFN(x)}=0, (For all a,NZ0+); (Z0+=0,1,2,), and

  3. F(x)=O(1),x0.

See Lighthill's [Citation27] work for more information on the space of suitable functions expressed on the entire real line (,).

3. Solution of an integral equation of Fredholm type utilizing IIF

In this section, using the MT method and the well-recognized WFI, we provide the solution to the Fredholm-type integral problem involving the IIF.

Lemma 3.1

Let

(A)

u,v,r,sZ0+ such that (s.t.) 0vr and 1us,

(B)

(Λκ)>0; (κ)+£(ΦiBi)>0, (i=1,2,,u),

(C)

Y0,£>0, and ΛC,

(D)

|arg(C)|<12πδ, provided δ is characterized in the relation (Equation15).

Then,

(25) WκΛ{VΛΓIr,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]}=VκΓIr+1,s+1u,v+1[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)].(25)

Proof.

We first consider the integral contour framework of the IIF provided in relation (Equation6) and then change the sequence of integrals to demonstrate the assertion along with (Equation25). We next apply the WFI defined in Equation (Equation20) (within the specified permitted conditions).

WκΛ{VΛΓIr,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]}=1Γ(Λκ)V(UV)Λκ1 (UΛ12πι$Cw(XU)£wΦ(w,Y)dw)dU=12πι1Γ(Λκ)$Cw X£wΦ(w,Y)(V(UV)Λκ1 UΛ£wdU)dw=Vκ12πι$Φ(w,Y)Cw(XV)£w Γ(κ+£w)Γ(Λ+£w)dw=VκΓIr+1,s+1u,v+1[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)].We can easily achieve the desired result by evaluating the power function at the WFI and thereupon trying to interpret the arising Mellin Barnes contour integral in terms of IIF.

Lemma 3.2

Suppose

(A)

u,v,r,sZ0+ s.t. 1us and 0vr,

(B)

(Λκ)>0; (κ)+£(ΦiBi)>0, (i=1,2,,u),

(C)

Y0,£>0, and ΛC,

(D)

|arg(C)|<12πδ, provided δ is characterized in the relation (Equation15).

Then,

(26) WκΛ{VΛγIr,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]}=VκγIr+1,s+1u,v+1[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)].(26)

Proof.

We won't describe it in detail here because the proof is identical to Lemma 3.1.

Theorem 3.3

Letting

(A)

u,v,r,sZ0+ s.t. 0vr and 1us,

(B)

Ψr,βs are positive real numbers,

(C)

(κ)+£(Ψi1Ai)<0; (κ)+£(ΦiBi)>0, (i=1,2,,u), (i=1,2,,v),

(D)

Y0,£>0, and ΛC.

Consequently, the subsequent integral relationship formula holds: (27) 0ΓIr+1,s+1u,v+1[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)]×Vκϕ(V)dV=0ΓIr,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]×VκDκΛ{ϕ(V)}dV,(27) with the result that ϕA and X>0.

Proof.

Suppose G denotes the first component of the statement in Equation (Equation27) of Theorem 3.3. Thereupon, using Lemma 3.1 and the definition in Equation (Equation20), we obtain G=0ϕ(V)(V(UV)Λκ1Γ(Λκ)UΛΓIr,su,v[C(XU)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]dU)dV.Next, by altering the order of integration under the allowable circumstances, we obtain G=0UΛΓIr,su,v[C(XU)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]×(0U(UV)Λκ1Γ(Λκ)ϕ(V)dV)dU.Moreover, using the widely used definition of the Riemann Liouville (RL) fractional derivative, we get G=0ΓIr,su,v[C(XU)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]×UΛDκΛ{ϕ(U)}dU,which is the right-handed component of Equation (Equation27).

Theorem 3.4

Let

(A)

u,v,r,sZ0+ s.t. 1us and 0vr,

(B)

Ψr,βs are positive real numbers,

(C)

(κ)+£(Ψi1Ai)<0; (i=1,2,,v), (κ)+£(ΦiBi)>0, (i=1,2,,u),

(D)

Y0,£>0, and ΛC.

Consequently, the subsequent integral relationship formula holds: (28) 0γIr+1,s+1u,v+1[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)]×Vκϕ(V)dV=0γIr,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]×VκDκΛ{ϕ(V)}dV,(28) with the result that ϕA and X>0.

Proof.

We won't describe it in detail here because the proof is identical to Theorem 3.3.

Theorem 3.5

Make the assumption that

(A)

u,v,r,sZ0+ s.t. 1us and 0vr,

(B)

Ψr,βs are positive real numbers,

(C)

(κ)+£(Ψi1Ai)<0; (i=1,2,,v), (κ)+£(ΦiBi)>0, (i=1,2,,u),

(D)

Y0,£>0,ΛC, and ϕ,ψA.

Then, the consequent IE: (29) 0VκΓIr,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]×ϕ(V)dV=ψ(X),(29) has now been solved by (30) ϕ(X)=£CP£XΛ12πι$XP[Φ(P£,Y)]1Ξ(P)dP,(30) where Ξ(P)=0XP1ψ(X)dX,and Φ(P£,Y) is shown in Equation (Equation9).

Proof.

ϕ is substituted for DΛκϕ in Equation (Equation27) to determine the integral equation's (Equation29) solution; we get 0VκΓIr+1,s+1u,v+1×[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)]×DΛκ{ϕ(V)}dV=ψ(X).By multiplying both sides by XP1, integrating from 0 to ∞ with respect to X, and thereupon altering the order of integration together with the allowable circumstances, we get

Ξ(P)=0XP1ψ(X)dX=0VκDΛκ{ϕ(V)}×(0XP1[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)]ΓIr+1,s+1u,v+1[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)]dX)dV.Now, using Equation (Equation23), we obtain Ξ(P)=Γ(κP)£Γ(ΛP)CP£Φ(P£,Y)0VPκDΛκ{ϕ(V)}dV.Moreover, by using the Mellin inversion theorem, we obtain DΛκ{ϕ(V)}=£2πι$VκP1Γ(ΛP)Γ(κP)CP£[Φ(P£,Y)]1Ξ(P)dP.Next, by operating on each side with DκΛ, we obtain ϕ(V)=£2πιDκΛ{$VκP1Γ(ΛP)Γ(κP)CP£[Φ(P£,Y)]1Ξ(P)dP},which eventually gives ϕ(X)=£CP£XΛ12πι$XP[Φ(P£,Y)]1Ξ(P)dP.

Theorem 3.6

Let

(A)

u,v,r,sZ0+ s.t. 1us and 0vr,

(B)

Ψr,βs are positive real numbers,

(C)

(κ)+£(Ψi1Ai)<0; (i=1,2,,v), (κ)+£(ΦiBi)>0, (i=1,2,,u),

(D)

Y0,£>0,ΛC, and ϕ,ψA.

Whereupon, the subsequent IE: (31) 0VκγIr,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]×ϕ(V)dV=ψ(X),(31) has a solution given by (32) ϕ(X)=£CP£XΛ12πι$XP[Ψ(P£,Y)]1Ξ(P)dP,(32) where Ξ(P)=0XP1ψ(X)dX,and Ψ(P£,Y) is shown in Equation (Equation8).

Proof.

Since the proof is identical to that of Theorem 3.5, we will skip the details here.

4. Solution of an integral equation of Fredholm type utilizing II¯F

In this section, using the MT method and the well-recognized WFI, we provide the solution to the Fredholm-type integral problem implicating the II¯F.

Lemma 4.1

Let

(A)

u,v,r,sZ0+ s.t. 0vr and 1us,

(B)

(Λκ)>0; (κ)+£(ΦiBi)>0, (i=1,2,,u),

(C)

Y0,£>0, and ΛC,

(D)

|arg(C)|<12πδ, where δ is provided in Equation (Equation15).

Then, (33) WκΛ{VΛΓI¯r,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]}=VκΓI¯r+1,s+1u,v+1×[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)].(33)

Proof.

We first demonstrate the integral contour form of the II¯F provided in Equation (Equation11), thereupon change the pattern of integrals to demonstrate the assertion in Equation (Equation33). We next apply the WFI defined in Equation (Equation20) (within the specified permitted conditions). We can easily achieve the desired result by evaluating the power function at the WFI and thereupon trying to interpret the arising Mellin Barnes contour integral in terms of II¯F.

Lemma 4.2

Let

(A)

u,v,r,sZ0+ s.t. 0vr and 1us,

(B)

(Λκ)>0; (κ)+£(ΦiBi)>0, (i=1,2,,u),

(C)

Y0,£>0, and ΛC,

(D)

|arg(C)|<12πδ, where δ is provided in Equation (Equation15).

Then, (34) WκΛ{VΛγI¯r,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]}=VκγI¯r+1,s+1u,v+1×[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)].(34)

Proof.

We first demonstrate the integral contour form of the II¯F provided in Equation (Equation12), then change the process of integrals to demonstrate the assertion in Equation (Equation34). We next apply the WFI defined in Equation (Equation20) (within the specified permitted conditions). We can easily achieve the desired result by evaluating the power function at the WFI and thereupon trying to interpret the arising Mellin Barnes contour integral in terms of II¯F.

Theorem 4.3

Let

(A)

u,v,r,sZ0+ s.t. 0vr and 1us,

(B)

Ψr,βs are positive real numbers,

(C)

(κ)+£(Ψi1Ai)<0; (i=1,2,,v), (κ)+£(ΦiBi)>0, (i=1,2,,u),

(D)

Y0,£>0, and ΛC.

Consequently, the subsequent integral relationship holds: (35) 0ΓI¯r+1,s+1u,v+1[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)]×Vκϕ(V)dV=0ΓI¯r,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]×VκDκΛ{ϕ(V)}dV,(35) with the result that ϕA and X>0.

Proof.

Suppose G¯ denotes the first component of the statement in Equation (Equation35) of Theorem 4.3. Thereupon, using Lemma 4.1 and the definition in Equation (Equation20), we have G¯=0ϕ(V)(V(UV)Λκ1Γ(Λκ)UΛΓI¯r,su,v[C(XU)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]dU)dV.Next, by altering the order of integration under the allowable circumstances, we obtain G¯=0UΛΓI¯r,su,v[C(XU)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]×(0U(UV)Λκ1Γ(Λκ)ϕ(V)dV)dU.Moreover, using the widely used definition of the RL fractional derivative, we get G¯=0ΓI¯r,su,v[C(XU)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]×UΛDκΛ{ϕ(U)}dU,which is the right-handed component of Equation (Equation35).

Theorem 4.4

Let

(A)

u,v,r,sZ0+ s.t. 1us and 0vr,

(B)

Ψr,βs are positive real numbers,

(C)

(κ)+£(Ψi1Ai)<0; (i=1,2,,v), (κ)+£(ΦiBi)>0, (i=1,2,,u),

(D)

Y0,£>0, and ΛC.

Consequently, the subsequent integral relation holds true: (36) 0γI¯r+1,s+1u,v+1[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)]×Vκϕ(V)dV=0γI¯r,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]×VκDκΛ{ϕ(V)}dV,(36) provided that ϕA and X>0.

Proof.

Since the proof is identical to that of Theorem 4.3, we will skip the details here.

Theorem 4.5

Considering

(A)

u,v,r,sZ0+ s.t. 1us and 0vr,

(B)

Ψr,βs are positive real numbers,

(C)

(κ)+£(Ψi1Ai)<0; (i=1,2,,v), (κ)+£(ΦiBi)>0, (i=1,2,,u),

(D)

Y0,£>0,ΛC, and ϕ,ψA.

Hence, the subsequent IE: (37) 0VκΓI¯r,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]×ϕ(V)dV=ψ(X),(37) has a solution, and it is provided by (38) ϕ(X)=£CP£XΛ12πι$XP[Φ¯(P£,Y)]1Ξ¯(P)dP,(38) where Ξ¯(P)=0XP1ψ(X)dX,and Φ¯(P£,Y) is shown in Equation (Equation9).

Proof.

ϕ is substituted for DΛκϕ in Equation (Equation35) to determine the integral equation's (Equation37) solution; we get 0VκΓI¯r+1,s+1u,v+1×[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)]×DΛκ{ϕ(V)}dV=ψ(X).

By multiplying both sides by XP1, integrating from 0 to ∞ in relation to X, and thereafter altering the order of integration along with the allowable circumstances, we get

Ξ¯(P)=0XP1ψ(X)dX=0VκDΛκ{ϕ(V)}×(0XP1[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)]ΓI¯r+1,s+1u,v+1[C(XV)£|(Ψ1,ζ1;A1:Y),(1κ,£;1),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs),(1Λ,£;1)]dX)dV.Now, using Equation (Equation24), we obtain Ξ¯(P)=Γ(κP)£Γ(ΛP)CP£Φ¯(P£,Y)0VPκDΛκ{ϕ(V)}dV.Moreover, by using the Mellin inversion theorem, we obtain DΛκ{ϕ(V)}=£2πι$VκP1Γ(ΛP)Γ(κP)CP£[Φ¯(P£,Y)]1Ξ¯(P)dP.Next, by operating on each side with DκΛ, we obtain ϕ(V)=£2πιDκΛ{$VκP1Γ(ΛP)Γ(κP)CP£[Φ¯(P£,Y)]1Ξ¯(P)dP},which eventually gives ϕ(X)=£CP£XΛ12πι$XP[Φ¯(P£,Y)]1Ξ¯(P)dP.

Theorem 4.6

Let

(A)

u,v,r,Z0+ s.t. 1us and 0vr,

(B)

Ψr,βs are positive real numbers,

(C)

(κ)+£(Ψi1Ai)<0; (i=1,2,,v), (κ)+£(ΦiBi)>0, (i=1,2,,u),

(D)

Y0,£>0,ΛC, and ϕ,ψA.

Then, the preceding IE: (39) 0VκγI¯r,su,v[C(XV)£|(Ψ1,ζ1;A1:Y),(Ψ2,ζ2;A2),,(Ψr,ζr;Ar)(Φ1,β1;B1),(Φ2,β2;B2),,(Φs,βs;Bs)]×ϕ(V)dV=ψ(X),(39) has a solution given by (40) ϕ(X)=£CP£XΛ12πι$XP[Ψ¯(P£,Y)]1Ξ¯(P)dP,(40) where Ξ¯(P)=0XP1ψ(X)dX,and Ψ¯(P£,Y) is shown in Equation (Equation8).

Proof.

Since the proof is identical to that of Theorem 4.5, we will skip the details here.

5. Remarks

This section presents some of the already available findings, which directly follow our major findings. Later, we develop more fascinating outcomes achieved by focusing on the parameters of the IIF and the II¯F of our main result.

Remark 5.1

If setting Ai=1,Bj=1(i=1,2,,r,j=1,2,,s) in Equations (Equation27) and (Equation28), then the outcome is as reported by Bansal et al. [Citation15].

Remark 5.2

If we consider setting Y=0,Ai=1,Bj=1(i=1,2,,r,j=1,2,,s) in Equations (Equation27) and (Equation28), then the outcome is as reported by Srivastava et al. [Citation10].

Now, we present some essential examples based on the main findings.

Example 5.3

If we substitute u=1,v=r, s=s+1,C(XV)£=C(XV)£,β1=1,Φ1=0,Ψi=1Ψi, Φi=1Φi, Ai=1,Bi=1 in Theorem 3.3, then we obtain the Fredholm integral equation solution that uses the incomplete Fox–Wright function rΨsΓ. (41) 0r+1Ψs+1Γ[C(XV)£|(Ψ1,ζ1:Y),(1κ,£),(Ψ2,ζ2),,(Ψr,ζr)(Φ1,β1),(Φ2,β2),,(Φs,βs),(1Λ,£)]×Vκϕ(V)dV.(41) Solution: Suppose G denotes the component of Equation (Equation41) of Example 5.3. Thereupon, using Lemma 3.1 and the definition in Equation (Equation20), we obtain G=0ϕ(V)(V(UV)Λκ1Γ(Λκ)UΛrΨsΓ[C(XU)£|(Ψ1,ζ1:Y),(Ψ2,ζ2),,(Ψr,ζr)(Φ1,β1),(Φ2,β2),,(Φs,βs)]dU)dV.Next, by altering the order of integration under the allowable circumstances, we obtain G=0UΛrΨsΓ[C(XU)£|(Ψ1,ζ1:Y),(Ψ2,ζ2),,(Ψr,ζr)(Φ1,β1),(Φ2,β2),,(Φs,βs)]×(0U(UV)Λκ1Γ(Λκ)ϕ(V)dV)dU.Moreover, using the widely used definition of the RL fractional derivative, we get G=0rΨsΓ[C(XU)£|(Ψ1,ζ1:Y),(Ψ2,ζ2),,(Ψr,ζr)(Φ1,β1),(Φ2,β2),,(Φs,βs)]×UΛDκΛ{ϕ(U)}dU.Now, replacing V=U, then we get the final solution of Equation (Equation41). (42) G=0rΨsΓ[C(XV)£|(Ψ1,ζ1:Y),(Ψ2,ζ2),,(Ψr,ζr)(Φ1,β1),(Φ2,β2),,(Φs,βs)]×VκDκΛ{ϕ(V)}dV.(42)

Example 5.4

If we substitute u=1,v=r, s=s+1,C(XV)£=C(XV)£,β1=1,Φ1=0,Ψi=1Ψi,Φi=1Φi,Ai=1,Bi=1, ζi=1,βi=1 in Theorem 3.3, then we obtain the Fredholm integral equation solution that uses the incomplete generalized hypergeometric function rΓs. (43) 0r+1Γs+1[C(XV)£|(Ψ1:Y),(1κ,£),Ψ2,,ΨrΦ1,Φ2,,Φs,(1Λ,£)]×Vκϕ(V)dV.(43) Solution: Suppose G denotes the component of Equation (Equation43) of Example 5.4. Thereupon, using Lemma 3.1 and the definition in Equation (Equation20), we obtain G=0ϕ(V)(V(UV)Λκ1Γ(Λκ)UΛrΓs[C(XU)£|(Ψ1:Y),Ψ2,,ΨrΦ1,Φ2,,Φs]dU)dV.Next, by altering the order of integration under the allowable circumstances, we obtain G=0UΛrΓs[C(XU)£|(Ψ1:Y),Ψ2,,ΨrΦ1,Φ2,,Φs]×(0U(UV)Λκ1Γ(Λκ)ϕ(V)dV)dU.Moreover, using the widely used definition of the RL fractional derivative, we get G=0rΓs[C(XU)£|(Ψ1:Y),Ψ2,,ΨrΦ1,Φ2,,Φs]×UΛDκΛ{ϕ(U)}dU.Now, replacing V=U, then we get the final solution of Equation (Equation43). (44) G=0rΓs[C(XV)£|(Ψ1:Y),Ψ2,,ΨrΦ1,Φ2,,Φs]×VκDκΛ{ϕ(V)}dV.(44)

Similarly, as above examples, we find a new instance for Theorems 3.3, 3.4, 4.3 and 4.4.

6. Conclusions

This paper introduces the Fredholm-type IE involving the IIF and the II¯F in the kernel. After, we acquire the Mellin transformation of the incomplete I-function. By figuring out the precise values of the various parameters of the IIF and the II¯F, we also highlight some known outcomes. Given this observation, the results presented here, being of a general character, can yield numerous generating functions for a particular class of incomplete I-function and other special functions expressible in terms of I-functions. Our conclusions are crucial in many different fields. With their aid, a wide range of fascinating and useful fractional integral equations with applications in engineering, communication theory, probability theory, and science can be created. In the near future work, solutions to other differential and integral equations may be obtained by including an incomplete I-function in the kernel for more generalization to transcendental problems.

Acknowledgments

The authors express their sincere thanks to the editor and reviewers for their fruitful comments and suggestions that improved the quality of the manuscript. The third author is grateful to the CSIR, MHRD, Govt. of India, New Delhi for funding through grant number (09/843(0006)/2020-EMR-I). KJ and SB made significant contributions to the creation and contributed to design of the work. S handled the analysis. SDP and DB conceptualized and double-checked the Analysis part. DLS was involved in the manuscript's drafting or critical revision for important intellectual content. All authors read and approved the final version of manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

No data were used for this study.

References

  • Baleanu D, Rezapour S, Saberpour Z. On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound Value Probl. 2019;2019(1):79.
  • Choi J, Agarwal P. Certain integral transforms for the incomplete functions. Appl Math Inf Sci. 2015;9(4):2161–2167.
  • Purohit SD, Baleanu D, Jangid K. On the solutions for generalised multiorder fractional partial differential equations arising in physics. Math Methods Appl Sci. 2021;1–9. doi:10.1002/mma.7431
  • Srivastava HM, Saxena RK. Some Volterra-type fractional integro-differential equations with a multivariable confluent hypergeometric function as their kernel. J Integr Equ Appl. 2005;17(2):199–217.
  • Jangid K, Bhatter S, Meena S, et al. Certain classes of the incomplete I-functions and their properties. Discontin Nonlinearity Complex. 2023;12(2).
  • Jangid K, Purohit SD, Nisar KS, et al. The internal blood pressure equation involving incomplete I-functions. Inf Sci Lett. 2020;9(3):171–174.
  • Purohit SD, Khan AM, Suthar DL, et al. The impact on raise of environmental pollution and occurrence in biological populations pertaining to incomplete H-function. Natl Acad Sci Lett. 2021;44(3):263–266.
  • Ioannou Y, Fyrillas MM, Doumanidis C. Approximate solution to Fredholm integral equations using linear regression and applications to heat and mass transfer. Eng Anal Bound Elem. 2012;36(8):1278–1283.
  • Ramm AG. Solution of some integral equations arising in integral geometry. Appl Math Lett. 1991;4(4):77–81.
  • Srivastava HM, Raina RK. On certain methods of solving a class of integral equations of Fredholm type. J Aust Math Soc. 1992;52(1):1–10.
  • Kumawat S, Bhatter S, Suthar DL, et al. Numerical modeling on age-based study of coronavirus transmission. Appl Math Sci Eng. 2022;30:609–634.
  • Mohammed PO, Abdeljawad T, Baleanu D, et al. New fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions. J Inequal Appl. 2020;2020(1):263.
  • Shyamsunder, Bhatter S, Jangid K, Purohit SD. Fractionalized mathematical models for drug diffusion. Chaos Solitons Fract. 2022;165:112810.
  • Agarwal P, Rassias TM, Singh G, et al. Certain fractional integral and differential formulas involving the extended incomplete generalized hypergeometric functions. Math Anal Appl. 2019;154:217–272. doi:10.1007/978-3-030-31339-5_8
  • Bansal MK, Kumar D, Singh J, et al. On the solutions of a class of integral equations pertaining to incomplete H-function and incomplete H¯-function. Mathematics. 2020;8(5):819.
  • Choi J, Agarwal P. Certain class of generating functions for the incomplete hypergeometric functions. Abstr Appl Anal. 2014;2014:714560.
  • Erdelyi A. An integral equation involving Legendre functions. J Soc Ind Appl Math. 1964;12(1):15–30.
  • Love ER. Some integral equations involving hypergeometric functions. Proc Edinb Math Soc. 1967;15(3):169–198.
  • Prabhakar TR. A class of integral equations with Gauss functions in the kernels. Math Nachr. 1972;52(1–6):71–83.
  • Srivastava HM, Agarwal P. Certain fractional integral operators and the generalized incomplete hypergeometric functions. Appl Appl Math. 2013;8(2):333–345.
  • Chaudhry MA, Zubair SM. On a class of incomplete gamma functions with applications. Strand: Chapman and Hall/CRC; 2001.
  • Rathie AK. A new generalization of generalized hypergeometric functions. Le Math. 1997;LII:297–310.
  • Jangid K, Bhatter S, Meena S, et al. Some fractional calculus findings associated with the incomplete I-functions. Adv Differ Equ. 2020;2020(1):265.
  • Miller KS, Ross B. An introduction to the fractional calculus and fractional differential equations. Hoboken (NJ): Wiley; 1993.
  • Bellman R, Roth RS. The laplace transform. Singapore: World Scientific; 1984.
  • Debnath L, Bhatta D. Integral transforms and their applications. Strand: Chapman and Hall/CRC; 2016.
  • Lighthill MJ, Lighthill MJS, Lighthill MJ. An introduction to Fourier analysis and generalised functions. Cambridge: Cambridge University Press; 1958.