1,691
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reciprocity of degenerate poly-Dedekind-type DC sums

, , &
Article: 2196422 | Received 05 Dec 2022, Accepted 15 Mar 2023, Published online: 16 Apr 2023

ABSTRACT

Dedekind-type DC sums and their properties are defined in terms of Euler functions. Ma et al. recently introduced poly-Dedekind-type DC sums and demonstrated that they satisfy a reciprocity relation. In this paper, we introduce the degenerate poly-Euler polynomials and numbers, and we also consider the reciprocity relations of degenerate poly-Dedekind-type DC sums. Equivalently, several properties and identities of degenerate poly-Euler functions are obtained.

MATHEMATICS SUBJECT CLASSIFICATIONS:

1. Introduction

Dedekind sums is a sum introduced by Dedekind when studying η functions. Moreover, the study of Dedekind sums and similar sums plays an important role in analytic mathematics, combinatorics, and algebraic number theory, and is closely related to the transformation formula of Dedekind functions and special value problems. Hence, Dedekind sums is defined by the relation: (1) s(h,k)=a=1k1((ak))((hak)),(1) sawtooth function (()): RR is defined by ((x))={x[x]12,ifxis not an integer,0,otherwisexis an integer,[x] being the largest integer x (see [Citation1–6]).

From (Equation1), we know the reciprocity law of the classical Dedekind sums s(h,k)+s(k,h)=14+112(hk+kh+1hk),where (h,k)=1 and h,kN:=1,2,3,, and N0:=N{0}.

In [Citation7], for (s)>1 and a0,1,2,, Apostol defined the Hurwitz zeta functions (2) ζ(s,a)=n=0(n+a)s,(2) and the generalized Dedekind sums was given by (3) sp(h,k)=ip!(2πik)pμ=1k1cotπhμkζ(p,μk),(3) where ζ(s,a) is the Hurwitz zeta function.

Furthermore, he deduced the reciprocity law which using complex integration (4) i(p+1)!(2πi)p{hμ=1k1cotπhμkζ(p,μk)+kν=1h1cotπkνhζ(p,νh)}=pBp+1+s=0p+1(p+1s)BsBp+1shskp+1s,(oddp>1).(4) Taka´cs [Citation6] introduced the generalized Dedekind sums by (5) sr(a,b|x,y)=j=0|b|1Pr(a(j+y)b+x)P1(j+yb),(5) where r is nonnegative integer, a, b are integers with b0, and x, y are real numbers, Pr(x)(0x<1) is the rth Bernoulli polynomials. When x=y=0,r=1, s1(a,b|0,0)14=s(a,b),where s(a,b) is Dedekind sums.

Carlitz [Citation8] generalized Dedekind sums by (6) sn(h,k:x,y)=a=0k1B¯n(ha+yk+x)B¯1(a+yk),(6) where n, h, k are positive integers and x, y are arbitrary real numbers, B¯n(x) is the nth Bernoulli polynomials. Note that for odd n and x=y=0,sn(h,k:x,y) reduces to sn(h,k).

Kim [Citation9] defined q-Bernoulli polynomials βm(x:q)(xZp,mN), and constructed a p-adic continuous function for an odd prime to contain a p-adic q-analogue of higher-order Dedekind sums kmSm+1(h,k) and introduced p-adic q-Dedekind sums (7) Sm,q(h,k:ql)=M=1k11qM1qkZpqlx(1ql(x+{hmk})1ql)mdμql(x),(7) where h, k are fixed integers with (h,k)=(p,k)=1, {x} is the fractional part of x.

Bayad and Simsek [Citation10] defined p-adic q-twisted Dedekind-type sums (8) sξ(h)(m,a,b:q)=c=0b1cqhcξcbZpqhxϕξ(x)(x+{cab})mdμ1(x),(8) where h,a,b are positive integers with (a,b)=1, p is an odd prime such that pb, {t} is the fractional part of t.

Jackson [Citation11] first defined the q-derivative operator Dq. In recent years, the q-derivatives have been widely used in other polynomials, such as, Khan et al. [Citation12] defined a number of subclasses of q-starlike functions, which associated with Janowski functions, and some coefficient inequalities with them. Shi et al. [Citation13] defined a new subclass of Janowski-type multivalent q-starlike functions. Zhang et al. [Citation14] defined a new subclass of bi-univalent functions and obtained some interesting results. By using q-Poisson distribution, Khan et al. [Citation15] defined function classes and derived some new subclasses and some useful results.

Berndt [Citation16] defined Dedekind sums with characters by (9) s(h,k;χ)=a=0kf1χ(a)B¯1,χ(hak)B¯1(akf),(9) where (h,k)=1, χ is a primitive character of conductor f, and B¯n,χ(x) is character Bernoulli function, for 0<x<1, B¯n,χ(x)=Bn,χ(x), where Bn,χ(x) denotes character Bernoulli polynomials.

Kim et al. [Citation2] introduced the poly-Dedekind sums (10) Sp(k)(h,m)=μ=1m1μmB¯p(k)(hμm),(10) where h,m,pN,kZ, and B¯p(k)=Bp(k) are the type 2 poly-Bernoulli functions.

Cenkci et al. [Citation1] defined the degenerate Dedekind sums (11) sn(h,k:x,y|λ)=a=0|k|1β¯n(λ,ha+yk+x)β¯1(λ,a+yk),(11) where h, k is arbitrary integers with (h,k)=d, β¯n(λ,x) is the nth degenerate Bernoulli polynomial and the reciprocity law are introduced by (n+1){hknsn(h,k:x,y|λ)+khnsn(k,h:y,x|λ)}=j=0n+1(n+1j)hjβ¯j(kλ,y)kn+1jβ¯(n+1j)(hλ,x)+λ2hkdn(n+1)(h+k+2n2)β¯n(hkdλ,hy+kxd)+ndn+1β¯n+1(hkdλ,hy+kxd),where d stands for the greatest common divisor of h and k.

Kim [Citation17] introduced the Dedekind-type DC sums (12) Tp(h,k)=2u=1k1(1)u1ukE¯p(huk),(hZ+),(12) and proved reciprocity relation to Dedekind-type DC sums by using Euler polynomials, (13) kpTp(h,k)+hpTp(k,h)=2u[huk]1mod2u=0k1(kh(E+uk)+k(E+h[huk]))p+(hE+kE)p+(p+2)EP,(13) where h, k are relative prime positive integers.

Simsek [Citation18] introduced the trigonometric function representation of Dedekind-type DC sums and the reciprocity law to Dedekind-type DC sums. Ma et al. [Citation4] introduced a new type of degenerate poly-Euler polynomials and numbers using the polylogarithm functions and degenerate polylogarithm functions, and introduced the poly-Dedekind type DC sums Tp(k)(h,m) and derived the reciprocity relations to poly-Dedekind DC sums. In particular, we are interested in degenerate poly-Euler polynomials and numbers. The goal of this paper is to show the degenerate poly-Dedekind type DC sums and demonstrate it satisfy a reciprocity relation by using the degenerate polylogarithm functions. In this paper, we introduce the degenerate poly-Euler polynomials and numbers, give some equations and properties. Meanwhile, we give the reciprocity relation to the degenerate poly-Dedekind-type DC sums.

Now, we give several definitions and properties. At the first, the poly-Dedekind-type DC sums (see [Citation4]) was given by (14) Tp(k)(h,m)=2μ=1m1(1)μμmE¯p(k)(hμm),(14) where h,m,pN, E¯p(k)(x) are poly-Euler functions, E¯p(k)(x)=Ep(k)(x[x]).

In [Citation1–9,Citation16–30], the Euler polynomials are usually defined by (15) 2et+1ext=n=0En(x)tnn!.(15) From [Citation19], Carlitz introduced the ordinary degenerate Euler polynomials (16) 2eλ(t)+1eλx(t)=n=0En,λ(x)tnn!.(16) The poly-Euler polynomials are defined by the generating function [Citation29] (17) Lik(1e2t)t(et+1)ext=n=0En(k)(x)tnn!,(17) when x = 0, En(k)=En(k)(0) are called the poly-Euler numbers. In particular, En(1)(x)=En(x)(n0) are called Euler polynomials.

The degenerate exponential function is defined by (18) eλx(t)=n=0(x)n,λtnn!,(λR(orC)),(18) where (x)0,λ=1, (x)n,λ=x(xλ)(x(n1)λ), (n1) [Citation17,Citation20,Citation22–24].

From (Equation18), we note that (19) eλx(t)=(1+λt)xλ,(19) when x = 1, eλ(t)=(1+λt)1λ=eλ1(t) [Citation20,Citation22–24].

For kZ, Kim–Kim introduced the degenerate polylogarithm function [Citation20] defined by (20) Lik,λ(x)=n=1(λ)n1(1)n,1/λ(n1)!nkxn,(|x|<1).(20)

When k = 1, Li1,λ(x)=n=1(λ)n1(1)n,1/λn!xn=logλ(1x),where logλ(x) is the inverse to eλ(x).

The type 2 degenerate Stirling numbers are defined by [Citation20,Citation21] (x)n,λ=k=0nS2,λ(n,k)(x)k,(n0),so we have (21) 1k!(eλ(t)1)k=n=kS2,λ(n,k)tnn!,(n0).(21) Ma et al. [Citation29] introduced the degenerate poly-Euler polynomials, by using the degenerate polylogrithm functions as follows: (22) Lik,λ(1eλ(2t))t(eλ(t)+1)eλx(t)=n=0En,λ(k)(x)tnn!,(22) note that En,λ(1)(x)=En,λ(x)(n0), when x = 0, En,λ(k)=En,λ(k)(0) are called the degenerate poly-Euler numbers.

From (Equation22), we note that En,λ(1)+En,λ=2δ0,n, (n0), where δn,k is the Kronecker's symbol.

By (Equation22), we have (23) n=0En,λ(k)(x)tnn!=Lik,λ(1eλ(2t))t(eλ(t)+1)eλx(t)=(m=0Em,λ(k)tmm!)(l=0(x)l,λtll!)=n=0(l=0n(nl)Enl,λ(k)(x)l,λ)tnn!.(23) Comparing both sides of (Equation23), we can derive the following identity: (24) En,λ(k)(x)=l=0n(nl)Enl,λ(k)(x)l,λ=l=0n(nl)El,λ(k)(x)nl,λ,(n0).(24)

2. Degenerate poly-Dedekind-type DC sums and reciprocity laws

In this section, we introduce the degenerate poly-Dedekind-type DC sums Tp,λ(k)(h,m) and derive the En,λ(k)(x) and reciprocity relations mpTp,λ(k)(h,m)+hpTp,λ(k)(m,h).

From (Equation14), we give the degenerate poly-Dedekind type DC sums as (25) Tp,λ(k)(h,m)=2μ=1m1(1)μμmE¯p,λ(k)(hμm),(25) where h,m,pN, E¯p,λ(k)(x) are called degenerate poly-Euler functions, E¯p,λ(k)(x)=Ep,λ(k)(x[x]).

Note that Tp,λ(1)(h,m)=2μ=1m1(1)μμmE¯p,λ(1)(hμm)=2μ=1m1(1)μμmE¯p,λ(hμm).

Theorem 2.1

For nN, we have (26) nEn1,λ(k)(1)+nEn1,λ(k)=m=1n(1)n12nλm1(1)m,1/λmk1S2,λ(n,m).(26)

Proof.

From (Equation22), we note that (27) Lik,λ(1eλ(2t))t(eλ(t)+1)=n=0En,λ(k)tnn!.(27) By (Equation27), we have (28) Lik,λ(1eλ(2t))=Lik,λ(1eλ(2t))t(eλ(t)+1)t(eλ(t)+1)=Lik,λ(1eλ(2t))t(eλ(t)+1)teλ(t)+Lik,λ(1eλ(2t))t(eλ(t)+1)t=n=0tEn,λ(k)(1)tnn!+n=0tEn,λ(k)tnn!=n=0(En,λ(k)(1)+En,λ(k))tn+1n!=n=1(nEn1,λ(k)(1)+nEn1,λ(k))tnn!.(28) On the other hand (29) Lik,λ(1eλ(2t))=m=1(λ)m1(1)m,1/λ(m1)!mk(1eλ(2t))m=m=1(λ)m1(1)m,1/λmk11m!(eλ(2t)1)m(1)m=m=1(λ)m1(1)m,1/λmk1n=mS2,λ(n,m)(2t)nn!(1)m=m=1λm1(1)m,1/λmk1n=m(1)n12nS2,λ(n,m)tnn!=n=1(m=1n(1)n12nλm1(1)m,1/λmk1S2,λ(n,m))tnn!.(29) Thus, comparing the coefficients of (Equation28) and (Equation29), we obtain identity (Equation26).

Let k = 1, from Theorem 2.1, we get the following corollary.

Corollary 2.2

For nN, we have m=1n(1)n12nλm1(1)m,1/λS2,λ(n,m)=2nδ0,n1,where δn,k is the Kronecker's symbol.

Proof.

From (Equation26), we take k = 1, then m=1n(1)n12nλm1(1)m,1/λS2,λ(n,m)=nEn1,λ(1)+nEn1,λ=n(En1,λ(1)+En1,λ)=2nδ0,n1.Hence, we get the desired result.

Theorem 2.3

For nN,kZ and d1(mod2),n0 En,λ(k)(x)=j=0ni=0d1l=1nj+1(nj)djEj,λ/d(i+xd)λl1(1)nj+i2nj(1)l,1/λ(nj+1)lk1S2,λ(nj+1,l).

Proof.

For dN, and d1(mod2), we have (30) n=0En,λ(k)(x)tnn!=Lik,λ(1eλ(2t))t(eλ(t)+1)eλx(t)=Lik,λ(1eλ(2t))t(eλ/d(dt)+1)i=0d1(1)ieλi+x(t)=12ti=0d1(1)ieλ/di+xd(dt)2eλ/d(dt)+1Lik,λ(1eλ(2t))=12ti=0d1(1)ij=0Ej,λ/d(i+xd)(dt)jj!Lik,λ(1eλ(2t))=12ti=0d1(1)ij=0djEj,λ/d(i+xd)tjj!l=1(λ)l1(1)l,1/λ(l1)!lk(1eλ(2t))l=12tj=0dji=0d1(1)iEj,λ/d(i+xd)tjj!l=1(λ)l1(1)l,1/λlk11l!(1)l(eλ(2t)1)l=12tj=0dji=0d1(1)iEj,λ/d(i+xd)tjj!l=1(λ)l1(1)l,1/λlk1(1)lm=lS2,λ(m,l)(2t)mm!=12tj=0dji=0d1(1)iEj,λ/d(i+xd)tjj!m=l(l=1mλl1(1)m1(1)l,1/λ2mlk1S2,λ(m,l))tmm!=j=0dji=0d1Ej,λ/d(i+xd)tjj!m=1(l=1mλl1(1)m+i1(1)l,1/λ2m1lk1S2,λ(m,l))tm1m!=j=0dji=0d1Ej,λ/d(i+xd)tjj!m=0(l=1m+1λl1(1)m+i(1)l,1/λ2mlk1S2,λ(m+1,l))tm(m+1)!=n=0(j=0ndji=0d1Ej,λ/d(i+xd)l=1nj+1λl1(1)nj+i(1)l,1/λ2njlk1S2,λ(nj+1,l))tnj!(nj+1)!=n=0(j=0ni=0d1l=1nj+1(nj)djEj,λ/d(i+xd)λl1(1)nj+i(1)l,1/λ2nj(nj+1)lk1S2,λ(nj+1,l))tnn!.(30) Then, from (Equation30), we arrive at the desired result.

Theorem 2.4

For m,h,pN, kZ, and m1(mod2),h1(mod2), we have mpTp,λ(k)(h,m)+hpTp,λ(k)(m,h)=μ=0m1j=0pν=0h1l=1pj+1(pj)(mh)j1λl1(1)pj2pj+1(1)l,1/λ(pj+1)lk1S2,λ(pj+1,l)(1)μ+ν×((μh)mpjE¯j,λ/h(μm+νh)+(mν)hpjE¯j,λ/m(μm+νh)).

Proof.

For m,hN, and m1(mod2),h1(mod2), by (Equation25) and Theorem 2.3, we get (31) mpTp,λ(k)(h,m)+hpTp,λ(k)(m,h)=2mpμ=0m1(1)μμmE¯p,λ(k)(hμm)+2hpν=0h1(1)ννhE¯p,λ(k)(mνh)=2mpμ=0m1(1)μμmj=0pν=0h1l=1pj+1(pj)λl1(1)pj+ν2pj(1)l,1/λ(pj+1)lk1S2,λ(pj+1,l)×hjE¯j,λ/h(μm+νh)+2hpν=0h1(1)ννhj=0pμ=0m1l=1pj+1(pj)λl1(1)pj+μ2pj(1)l,1/λ(pj+1)lk1S2,λ(pj+1,l)×mjE¯j,λ/m(μm+νh)=μ=0m1μmj=0pν=0h1l=1pj+1(pj)λl1(1)pj+ν+μ2pj+1(1)l,1/λ(pj+1)lk1S2,λ(pj+1,l)×mpj(mh)jE¯j,λ/h(μm+νh)+ν=0h1νhj=0pμ=0m1l=1pj+1(pj)λl1(1)pj+μ+ν2pj+1(1)l,1/λ(pj+1)lk1S2,λ(pj+1,l)×hpj(mh)jE¯j,λ/m(μm+νh)=μ=0m1j=0pν=0h1l=1pj+1(pj)(mh)j1λl1(1)pj+ν+μ2pj+1(1)l,1/λ(pj+1)lk1S2,λ(pj+1,l)×mpj(μh)E¯j,λ/h(μm+νh)+μ=0m1j=0pν=0h1l=1pj+1(pj)(mh)j1λl1(1)pj+μ+ν2pj+1(1)l,1/λ(pj+1)lk1S2,λ(pj+1,l)×hpj(mν)E¯j,λ/m(μm+νh)=μ=0m1j=0pν=0h1l=1pj+1(pj)(mh)j1λl1(1)pj2pj+1(1)l,1/λ(pj+1)lk1S2,λ(pj+1,l)(1)μ+ν×((μh)mpjE¯j,λ/h(μm+νh)+(mν)hpjE¯j,λ/m(μm+νh)).(31) Therefore, by (Equation31), we obtain the reciprocity relations for the degenerate poly-Dedekind-type DC sums.

Corollary 2.5

For m,h,pN, and m1(mod2),h1(mod2), then we get mpTp(h,m)+hpTp(m,h)=2μ=0m1ν=0h1(mh)p1(1)μ+ν(μh+mν)E¯p(μm+νh).

Proof.

Taking k = 1 and λ0, by Corollary 2.2 and Theorem 2.4, we have mpTp(h,m)+hpTp(m,h)=μ=0m1j=0pν=0h1l=1pj+1(pj)(mh)j1λl1(1)pj2pj+1(1)l,1/λpj+1S2,λ(pj+1,l)(1)μ+ν×((μh)mpjE¯j,λ/h(μm+νh)+(mν)hpjE¯j,λ/m(μm+νh))=2μ=0m1ν=0h1(mh)p1(1)μ+ν((μh)E¯p,λ/h(μm+νh)+(mν)E¯p,λ/m(μm+νh))=2μ=0m1ν=0h1(mh)p1(1)μ+ν(μh+mν)E¯p(μm+νh).Consequently, we obtain the result.

3. Conclusion

In this paper, we observe that the poly-Dedekind-type DC sums and their generalizations are defined in terms of poly-Euler functions and their generalizations. So we introduced the degenerate poly-Ddekind-type DC sums Tp,λ(k)(h,m), which satisfy the reciprocity relations. Meanwhile, we derive several identities and properties for degenerate poly-Euler polynomials and numbers.

As a further generalizations of the poly-Dedekind type DC sums, we would like to further study the reciprocity relations of degenerate poly-Dedekind-type DC sums, some properties of degenerate poly-Dedekind-type DC sums, their generating functions in the exponential form and their applications in physics and mathematics as well as other fields.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was funded by the National Natural Science Foundation of China (Nos. 12271320, 11871317,11926325, 11926321), Key Research and Development Program of Shaanxi (No. 2021GY-137).

References

  • Cenkci M, Can M, Kurt V. Degenerate and character Dedekind sums. J Number Theory. 2007;124:346–363.
  • Kim HK. A new type of degenerate poly-type 2 euler polynomials and degenerate unipoly type 2 euler polynomials. Proc Jangjeon Math Soc. 2021;2021:1–15.
  • Kim DS, Kim T. Some applications of degenerate poly-Bernoulli numbers and polynomials. Georgian Math J. 2019;26(3):415–421.
  • Ma Y, Kim DS, Lee H, et al. Reciprocity of poly-Dedekind type DC sums involving poly-Euler functions. Adv Differ Equ. 2021;2021:30.
  • Simsek Y, Acikgoz M. Remarks on Dedekind eta function, theta functions and Einstein series under the Hecke operators. Adv Stud Contemp Mathe. 2005;1(1):15–24.
  • Taka´cs L. On generalized Dedekind sums. J Number Theory. 1979;11:264–272.
  • Apostol TM. Theorems on generalized Dedekind sums. Pacific J Math. 1952;2(1):1–9.
  • Carlitz L. Generalized Dedekind sums. Math Z. 1964;85:83–90.
  • Kim T. A note on p-Adic q-Dedekind sums. C R Acad Bulgare Sci. 2001;54(10):37–42.
  • Bayad A, Simsek Y. p-Adic q-Twisted Dedekind-type sums. Symmetry. 2021;13(9):1756.
  • Jackson FH. On q-definite integrals. Q J Pure Appl Math. 1910;41:193–203.
  • Khan B, Liu ZG, Srivastava HM, et al. Higher-order q-derivatives and their applications to subclasses of multivalent Janowski type q-starlike functions. Adv Differ Equ. 2021;440:1–15.
  • Shi L, Ahmad B, Khan N, et al. Coefficient estimates for a subclass of meromorphic multivalent -close-to-convex functions. Symmetry. 2021;13(1840):1–12.
  • Khan B, Srivastava HM, Tahir M, et al. Applications of a certain integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021;6:1024–1039.
  • Khan B, Liu Z-G, Shaba TG, et al. Applications of q-derivative operator to the subclass of bi-Univalent functions involving q-Chebyshev polynomials. J Math. 2022;2022(2):1–17.
  • Berndt BC. Character transformation formulae similar to those for the Dedekind eta function. Proc Sympos Pure Math. 1973;24:9–30.
  • Kim T. Note on Dedekind type DC sums. Adv Stud Contemp Math. 2009;18(2):249–260.
  • Simsek Y. Special functions related to Dedekind-type DC-sums and their applications. Russ J Math Phys. 2010;17(4):495–508.
  • Carlitz L. Degenerate stirling, Bernoulli and Eulerian numbers. Utilitas Math. 1979;15:51–88.
  • Kim DS, Kim T. A note on a new type of degenerate Bernoulli numbers. Russ J Math Phys. 2020;27(2):227–235.
  • Kim T. A note on degenerate stirling polynomials of the second kind. Proc Jangjeon Math Soc. 2017;20(3):319–331.
  • Kim T, Kim DS, Lee H, et al. Identities on poly-Dedekind sums. Adv Differ Equ. 2020;2020:563.
  • Kim DS, Kim T. A note on polyexponential and unipoly functions. Russ J Math Phys. 2019;26(1):40–49.
  • Kim T, Kim DS, Kwon J, et al. Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials. Adv Differ Equ. 2020;168:1–12.
  • Kim T, Kim DS. Degenerate Laplace transform and degenerate gamma function. Russ J Math Phys. 2017;24(2):241–248.
  • Kim T. Note on q-Dedekind-type sums related to q-Euler polynomials. Glasg Math J. 2012;54(1):121–125.
  • Degenerate polyexponential functions and poly-Euler polynomials. Commun Korean Math Soc. 2021;36:19–26.
  • Lee DS, Kim HK, Jang L-C. Type 2 degenerate poly-Euler polynomials. Symmetry. 2020;12:1011.
  • Ma Y, Kim T, Li H. A new type of degenerate poly-Euler polynomials, arXiv preprint: arXiv:2210.08208.
  • Simsek Y. Remarks on reciprocity laws of the Dedekind and Hardy sums. Adv Stud Contemp Math. 2006;2(2):237–246.