1,780
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Some combinatorial identities containing central binomial coefficients or Catalan numbers*

, &
Article: 2204233 | Received 25 Nov 2022, Accepted 11 Apr 2023, Published online: 30 Apr 2023

Abstract

In the article, by virtue of Maclaurin's expansions of the arcsine function and its square and cubic, the authors

  1. give a short proof of a sum formula of a Maclaurin's series with coefficients containing reciprocals of the Catalan numbers;

  2. establish four sum formulas for finite sums containing the ratio or product of two central binomial coefficients or the Catalan numbers.

The instant proof simplifies discussions in the journal papers: College Math. J. 43 (2012), no. 2, 141–146; Amer. Math. Monthly 121 (2014), no. 3, 267–267; Amer. Math. Monthly 123 (2016), no. 4, 405–406; Elem. Math. 71 (2016), no. 3, 109–121; and Mathematics 5 (2017), no. 3, Article 40, 31 pages.

Mathematics Subject Classifications:

1. Maclaurin's expansions of the powers of the arcsine function

The sequence of central binomial coefficients (2) for 0 is classical, simple, and elementary. This sequence has attracted many mathematicians who have published a number of papers such as [Citation1–11].

Maclaurin's expansion of arcsinv can be written as (1) arcsinv==0122(2)v2+12+1,|v|1.(1) See [Citation12, 4.4.40] and [Citation13, p. 121, 6.41.1].

Maclaurin's expansion of (arcsinv)2 can be formulated as (2) (arcsinv)2==022+1(2(+1)+1)v2(+1)(+1)2,|v|1.(2) See [Citation13, p. 122, 6.42.1], [Citation14, pp. 262–263, Proposition 15], [Citation15, pp. 50–51 and p. 287], [Citation16, p. 384], [Citation17, Lemma 2], [Citation18, p. 308], [Citation19, pp. 88–90], [Citation20, p. 61, 1.645], [Citation21, p. 453], [Citation22, Section 6.3], [Citation23, p. 59, (2.56)], or [Citation24, p. 676, (2.2)].

Maclaurin's expansion of (arcsinv)3 can be arranged as (3) (arcsinv)3=3!=02+122+1C[q=01(2q+1)2]v2+32+3,|v|1,(3) where C=1+1(2)for 0 denotes the Catalan numbers [Citation25–28]. See [Citation13, p. 122, 6.42.2], [Citation14, pp. 262–263, Proposition 15], [Citation29, p. 188, Example 1], [Citation18, p. 308], [Citation19, pp. 88–90], or [Citation20, p. 61, 1.645].

Differentiating (Equation1), (Equation2), and (Equation3) and simplifying result in (4) 11v2==0122(2)v2,(4) (5) arcsinv1v2==022+1(2(+1)+1)v2+1+1,(5) (6) (arcsinv)21v2==02+122C[q=01(2q+1)2]v2+2.(6) Maclaurin's expansion (Equation5) was also listed or recovered in [Citation13, p. 122, 6.42.5], [Citation16, p. 384], [Citation30, p. 161], [Citation21, p. 452, Theorem], and [Citation22, Section 6.3, Theorem 21, Sections 8 and 9].

Maclaurin's expansions (Equation1), (Equation2), (Equation3), (Equation4), (Equation5), and (Equation6) have been employed in [Citation17, Citation31] to establish sum formulas for finite sums containing the quantities (2mm)(2(m)m)or(2mm)(2(m+1)m+1)for m0.

In 1922, Maclaurin's expansion of 1v2arcsinv with minor errors was listed in [Citation13, p. 122, 6.42.4] and we now correct it as (7) 1v2arcsinv=v=1222[(1)!]2(21)!v2+12+1,|v|1.(7) Recently, Maclaurin's series expansions of the functions (arcsint)m,(arcsintt)m,(arcsint)m1t2 for mN have been reviewed and surveyed in [Citation32]. Hereafter, very nice Maclaurin's and Taylors's series expansions of the functions (arcsintt)α,(arcsint)α1t2,(arcsinhtt)m,[(arccosx)22(1x)]α,[(arccoshx)22(1x)]m,(2arccostπ)αwere discovered in the papers [Citation33–36], where mN and αR.

In this paper, by virtue of the above seven Maclaurin's expansions (Equation1), (Equation2), (Equation3), (Equation4), (Equation5), (Equation6), and (Equation7), we will

  1. give a short proof of a sum formula of the series =0(1)vCfor 0v4;

  2. establish four sum formulas for finite sums containing the ratio or product of two central binomial coefficients or the Catalan numbers C.

For details on our main results, please read Sections 2 and 3 below.

2. A short proof of a sum formula

The sum formulas (Equation8) and (Equation9) in Theorem 2.1 below have been proved in [Citation37–41] and [Citation22, pp. 17–28, Sections 6–9] by spending much space on complicated and technical arguments.

Theorem 2.1

[Citation37–41] and [Citation22, pp. 17–28, Sections 6–9]

For 0v4, (8) =0vC=2(8+v)(4v)2+24v(4v)5/2arcsinv2(8) and (9) =0(1)vC=2(8v)(4+v)2+24v(4+v)5/2ln4+vv2.(9)

By virtue of Maclaurin's expansion (Equation7), we now give a marvelous, short, instant, simple, and elementary proof of the sum formulas (Equation8) and (Equation9).

Proof of Theorem 2.1.

We can write Maclaurin's expansion (Equation7) as (10) 1v2arcsinv=v=122(1)(21)(2(1)1)v2+12+1,|v|1.(10) Maclaurin's expansion (Equation10) can be further rewritten in terms of the Catalan numbers C as (11) 1v2arcsinv=v=122(1)(21)C1v2+12+1,|v|1.(11) Differentiating three times on both sides of (Equation11) and simplifying yield (12) 3varcsinv(1v2)5/2+v2+2(1v2)2==022+1Cv2,|v|1.(12) Taking v2=u4 for 0u4 in (Equation12) and simplifying give the sum formula (Equation8).

Letting v2=u4 for 0u4 in (Equation12), we find (13) 3(1+u4)5/2ju2arcsinju2+2u4(1+u4)2=2=0(1)uC,(13) where j=1 is the imaginary unit in complex analysis. Making use of the logarithmic representation arcsinv=jln(1v2+iv),v21in [Citation12, p. 80, 4.4.26] and [Citation42, p. 119, 4.23.19], we obtain arcsinju2=jln[1(ju2)2+jju2]=jln4+uu2.Substituting this equality into (Equation13) and simplifying produce 3(1+u4)5/2u2ln4+uu2+2u4(1+u4)2=2=0(1)uCwhich is equivalent to 2=0(1)uC=4(8u)(4+u)2+48u(4+u)5/2ln4+uu2.The sum formula (Equation9) is proved.

Remark 2.1

The short proof of Theorem 2.1 shows that the method used for proving the sum formula (Equation9) is better than previous ones. Therefore, we will apply this method to establish several more formulas for finite sums containing the quantities (2) or C in next section.

3. Four identities containing central binomial coefficients

In this section, by virtue of Maclaurin's expansions (Equation1), (Equation2), (Equation3), (Equation4), (Equation5), (Equation6), (Equation7), we establish four sum formulas for finite sums containing the quantities (2) or C.

Theorem 3.1

For N, (14) q=0124q(2q+1)(2q+3)(2(q1)q1)(2qq)=2(2+1)(2),(14) (15) q=011(2q+1)(2q+3)(q)1(2qq)(2(q)q)=2(+1)(2+1)(2),(15) (16) q=013q+4(q+1)(q+2)(2q)!!(2q+3)!!=122+1(2(+1)+1)1(+1)2,(16) and (17) q=012q+124q[2(q)1][2(q)+1]Cq(2(q1)q1)=0q1(2+1)2=(2+1)C243(2+3)q=01(2q+1)2.(17)

Proof of Theorem 3.1.

Utilizing the Cauchy product of the product of two Maclaurin's expansions, we acquire arcsinv=11v2(1v2arcsinv)=[=0122(2)v2][v=122(1)(21)(2(1)1)v2+12+1]==0122(2)v2+1[=0122(2)v2]=022(2+1)(2)v2+32+3==0122(2)v2+1=0[q=022(2q)(2q+1)(2q+3)(2(q)q)(2qq)]v2+3==0122(2)v2+1=1[q=0122(2q+1)(2q+1)(2q+3)(2(q1)q1)(2qq)]v2+1=v+=1122[(2)q=0122(2q+1)(2q+1)(2q+3)(2(q1)q1)(2qq)]v2+1,where we used (Equation4) and (Equation10). Comparing this with (Equation1) and equating the coefficient of the term v2+1 for N lead to 122(2)12+1=122[(2)q=0122(2q+1)(2q+1)(2q+3)(2(q1)q1)(2qq)]which is equivalent to (Equation14).

Similarly, we can write (arcsinv)2=arcsinv1v2(1v2arcsinv)=[=022+1(2(+1)+1)v2+1+1][v=122(1)(21)(2(1)1)v2+12+1]==022+1(2(+1)+1)v2+2+1[=022+1(2(+1)+1)v2+1+1]=022(2+1)(2)v2+32+3==022+1(2(+1)+1)v2+2+1=0[q=022(q)+1(2(q+1)q+1)1q+122q(2q+1)(2qq)12q+3]v2+4==022+1(2(+1)+1)v2+2+1=1221[q=011(2qq)(2(q)q)1(2q+1)(2q+3)(q)]v2+2=v2+=1221[4(2(+1)+1)1+1q=011(2qq)(2(q)q)1(2q+1)(2q+3)(q)]v2+2,where we used (Equation5) and (Equation10). Comparing this with Maclaurin's expansion (Equation2) and equating result in 22+1(2(+1)+1)1(+1)2=221[4(2(+1)+1)1+1q=011(2qq)(2(q)q)1(2q+1)(2q+3)(q)],which can be rearranged as (Equation15).

Direct computation gives d(1v2arcsinv)2dv=21v2arcsinv2v(arcsinv)2=2[v=1222[(1)!]2(21)!v2+12+1]2v=022+1(2(+1)+1)v2(+1)(+1)2=2v=1221[(1)!]2(21)!v2+12+1=122(2)v2+12=2v=1221([(1)!]2(21)!12+1+2(2)12)v2+1=2v=1221[1(421)(2(1)1)+22(2)]v2+1,where Maclaurin's expansions (Equation2) and (Equation7) were employed. Accordingly, we obtain (18) (1v2arcsinv)2=v2=13+1(+1)(22)!!(2+1)!!v2+2.(18) Maclaurin's expansion (Equation18) can also be derived from (Equation7) as follows: (1v2arcsinv)2=(1v2)(arcsinv)2=(1v2)=022+1(2(+1)+1)v2(+1)(+1)2==022+1(2(+1)+1)v2(+1)(+1)2=022+1(2(+1)+1)v2(+2)(+1)2==022+1(2(+1)+1)v2(+1)(+1)2=1221(2)v2(+1)2=v2+=1[22+1(2(+1)+1)1(+1)2221(2)12]v2(+1)=v2=13+1(+1)(22)!!(2+1)!!v2+2,where we used Maclaurin's expansion (Equation2).

Employing Maclaurin's expansion (Equation18) yileds (arcsinv)2=11v2(1v2arcsinv)2=(=0v2)[v2=13+1(+1)(22)!!(2+1)!!v2+2]==0v2+2(=0v2)=13+1(+1)(22)!!(2+1)!!v2+2==0v2+2(=0v2)=03+4(+1)(+2)(2)!!(2+3)!!v2+4==0v2+2=0[q=03q+4(q+1)(q+2)(2q)!!(2q+3)!!]v2+4==0v2+2=1[q=013q+4(q+1)(q+2)(2q)!!(2q+3)!!]v2+2=v2+=1[1q=013q+4(q+1)(q+2)(2q)!!(2q+3)!!]v2+2.Comparing this with (Equation2) and equating conclude 22+1(2(+1)+1)1(+1)2=1q=013q+4(q+1)(q+2)(2q)!!(2q+3)!!.The sum formula (Equation16) is thus proved.

Finally, we write (arcsinv)3=(arcsinv)21v2(1v2arcsinv)=(=02+122C[q=01(2q+1)2]v2+2)×[v=122(1)(21)(2(1)1)v2+12+1]==02+122C[q=01(2q+1)2]v2+3(=02+122C[q=01(2q+1)2]v2+2)=022(2+1)(2)v2+32+3==02+122C[q=01(2q+1)2]v2+3=0(q=02q+122qCq[=0q1(2+1)2]×22(q)[2(q)+1](2(q)q)12(q)+3)v2+5==02+122C[q=01(2q+1)2]v2+3=022(q=02q+124q[2(q)+1][2(q)+3]×[=0q1(2+1)2]Cq(2(q)q))v2+5==02+122C[q=01(2q+1)2]v2+3=122(1)×(q=012q+124q[2(q)1][2(q)+1]×[=0q1(2+1)2]Cq(2(q1)q1))v2+3=v3+=1(2+122C[q=01(2q+1)2]22(1)×q=012q+124q[2(q)1][2(q)+1]×[=0q1(2+1)2]Cq(2(q1)q1))v2+3,where we used (Equation6) and (Equation10). Comparing this with (Equation3) and equating give 3!2+122+1C[q=01(2q+1)2]12+3=2+122C[q=01(2q+1)2]22(1)q=012q+124q[2(q)1][2(q)+1][=0q1(2+1)2]Cq(2(q1)q1)which can be rearranged as (Equation17).

Acknowledgments

The authors appreciate anonymous referees for their careful reading and valuable comments on the original version of this paper.

Availability of Data and Material

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

Dr. Dongkyu Lim, the third and corresponding author, was supported by the National Research Foundation of Korea under Grant NRF-2021R1C1C1010902, Republic of Korea.

References

  • Alzer H, Nagy GV. Some identities involving central binomial coefficients and Catalan numbers. Integers. 2020;20:A59.
  • Boyadzhiev KN. Series with central binomial coefficients, Catalan numbers, and harmonic numbers. J Integer Seq. 2012;15(1):12.1.7.
  • Campbell JM. New series involving harmonic numbers and squared central binomial coefficients. Rocky Mountain J Math. 2019;49(8):2513–2544. https://doi.org/10.1216/RMJ-2019-49-8-2513.
  • Chen H. Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers. J Integer Seq. 2016;19(1):16.1.5.
  • Garcia-Armas M, Seturaman BA. A note on the Hankel transform of the central binomial coefficients. J Integer Seq. 2008;11:08.5.8.
  • Gu CY, Guo VJW. Proof of two conjectures on supercongruences involving central binomial coefficients. Bull Aust Math Soc. 2020;102(3):360–364. https://doi.org/10.1017/s0004972720000118.
  • Li Y-W, Qi F. A sum of an alternating series involving central binomial numbers and its three proofs. J Korean Soc Math Educ Ser B Pure Appl Math. 2022;29(1):31–35. https://doi.org/10.7468/jksmeb.2022.29.1.31.
  • Mikić J. On certain sums divisible by the central binomial coefficient. J Integer Seq. 2020;23(1):20.1.6.
  • Qi F, Lim D. Integral representations and properties of several finite sums containing central binomial coefficients. ScienceAsia. 2023;49(2):205–211. http://dx.doi.org/10.2306/scienceasia1513-1874.2022.137.
  • Spivey MZ. The art of proving binomial identities. Boca Raton, FL: CRC Press; 2019. (Discrete Mathematics and its Applications).
  • Sprugnoli R. Sums of reciprocals of the central binomial coefficients. Integers. 2006;6:A27.
  • Abramowitz M, Stegun IA. Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York, Washington: Dover Publications; 1972 (Applied Mathematics Series; vol. 55).
  • Adams EP, Hippisley RL. Smithsonian mathematical formulae and tables of elliptic functions. Washington, D.C.: Smithsonian Institute; 1922.
  • Berndt BC. Ramanujan's notebooks, part I. New York: Springer-Verlag; 1985.
  • Borwein JM, Bailey DH, Girgensohn R. Experimentation in mathematics: computational paths to discovery. Natick, MA: A K Peters, Ltd.; 2004.
  • Borwein JM, Borwein PB. Pi and the AGM: a study in analytic number theory and computational complexity. New York: A Wiley-Interscience Publication, John Wiley & Sons, Inc.; 1987. (Canadian Mathematical Society Series of Monographs and Advanced Texts).
  • Chen CP. Sharp Wilker- and Huygens-type inequalities for inverse trigonometric and inverse hyperbolic functions. Integral Transforms Spec Funct. 2012;23(12):865–873. https://doi.org/10.1080/10652469.2011.644851.
  • Davydychev AI, Kalmykov MY. New results for the ε-expansion of certain one-, two- and three-loop Feynman diagrams. Nuclear Phys B. 2001;605(1-3):266–318. https://doi.org/10.1016/S0550-3213(01)00095-5.
  • Edwards J. Differential calculus. 2nd ed. London: Macmillan; 1982.
  • Gradshteyn IS, Ryzhik IM. Table of integrals, series, and products. Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Eighth edition, Revised from the seventh edition, Amsterdam: Elsevier/Academic Press; 2015. Available Online athttps://doi.org/10.1016/B978-0-12-384933-5.00013-8.
  • Lehmer DH. Interesting series involving the central binomial coefficient. Amer Math Monthly. 1985;92(7):449–457. http://dx.doi.org/10.2307/2322496.
  • Qi F, Guo BN. Integral representations of the Catalan numbers and their applications. Mathematics. 2017;5(3):40. https://doi.org/10.3390/math5030040.
  • Wilf HS. Generatingfunctionology, 3rd ed. Wellesley, MA: A K Peters, Ltd.; 2006.
  • Zhang B, Chen C-P. Sharp Wilker and Huygens type inequalities for trigonometric and inverse trigonometric functions. J Math Inequal. 2020;14(3):673–684. https://doi.org/10.7153/jmi-2020-14-43.
  • Grimaldi RP. Fibonacci and Catalan numbers. Hoboken, NJ: John Wiley & Sons, Inc.; 2012.
  • Koshy T. Catalan numbers with applications. Oxford: Oxford University Press; 2009.
  • Roman S. An introduction to catalan numbers. Cham: Birkhäuser/Springer; 2015. (Compact Textbook in Mathematics).
  • Stanley RP. Catalan numbers. New York: Cambridge University Press; 2015.
  • Bromwich TJI. An introduction to the theory of infinite series. London: Macmillan and Co., Ltd.; 1908.
  • Bradley DM. A class of series acceleration formulae for Catalan's constant. Ramanujan J. 1999;3(2):159–173https://doi.org/10.1023/A:1006945407723.
  • Qi F, Chen CP, Lim D. Several identities containing central binomial coefficients and derived from series expansions of powers of the arcsine function. Results Nonlinear Anal. 2021;4(1):57–64. https://doi.org/10.53006/rna.867047.
  • Guo BN, Lim D, Qi F. Series expansions of powers of arcsine, closed forms for special values of bell polynomials, and series representations of generalized logsine functions. AIMS Math. 2021;6(7):7494–7517. https://doi.org/10.3934/math.2021438.
  • Guo BN, Lim D, Qi F. Maclaurin's series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial bell polynomials, and series representation of generalized logsine function. Appl Anal Discrete Math. 2022;16(2):427–466. https://doi.org/10.2298/AADM210401017G.
  • Qi F. Explicit formulas for partial bell polynomials, Maclaurin's series expansions of real powers of inverse (hyperbolic) cosine and sine, and series representations of powers of Pi. Research Square. 2021. https://doi.org/10.21203/rs.3.rs-959177/v3.
  • Qi F. Taylor's series expansions for real powers of two functions containing squares of inverse cosine function, closed-form formula for specific partial bell polynomials, and series representations for real powers of Pi. Demonstr Math. 2022;55(1):710–736. https://doi.org/10.1515/dema-2022-0157.
  • Qi F, Ward MD. Closed-form formulas and properties of coefficients in Maclaurin's series expansion of Wilf's function composited by inverse tangent, square root, and exponential functions. arXiv (2022). https://arxiv.org/abs/2110.08576v2.
  • Abel U. Reciprocal Catalan sums: Solution to Problem 11765. Amer Math Monthly. 2016;123(4):405–406. https://doi.org/10.4169/amer.math.monthly.123.4.399.
  • Amdeberhan T, Guan X, Jiu L, et al. A series involving Catalan numbers: proofs and demonstrations. Elem Math. 2016;71(3):109–121. https://doi.org/10.4171/EM/306.
  • Beckwith D, Harbor S. Problems and solutions. Amer Math Monthly. 2014;121(3):267–267. https://doi.org/10.4169/amer.math.monthly.121.03.266.
  • Koshy T, Gao ZG. Convergence of a Catalan series. College Math J. 2012;43(2):141–146. https://doi.org/10.4169/college.math.j.43.2.141.
  • Stewart SM. The inverse versine function and sums containing reciprocal central binomial coefficients and reciprocal Catalan numbers. Int J Math Educ Sci Technol. 2022;53(7):1955–1966. https://doi.org/10.1080/0020739X.2021.1912842.
  • Olver FWJ, Lozier DW, Boisvert RF, et al. NIST handbook of mathematical functions. New York: Cambridge University Press; 2010.