406
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the two variables κ-Appell hypergeometric matrix functions

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2272862 | Received 03 Jan 2023, Accepted 13 Oct 2023, Published online: 29 Oct 2023

Abstract

This work aims to introduce κ-Appell hypergeometric matrix functions F1,κ,F2,κ,F3,κ and F4,κ, where κN. New relations for these functions, such as the integral representation, important transformation formulas, infinite matrix summation and reduction formulas, are also presented. Finally, new results of the differential formulas associated with κ-Appell hypergeometric matrix functions F1,κ,F2,κ are derived.

MATHEMATICS SUBJECT CLASSIFICATIONS:

1. Introduction and preliminaries

Special functions play an important role in solving several problems in analysis, mathematical sciences, mathematical physics, engineering [Citation1–5] and many applications because they represent the solutions of many famous differential equations. Specifically, Appell hypergeometric functions exist in several physical, chemical and engineering applications [Citation6–11] and the exact solution of several problems in quantum mechanics is explored using Appell’s function [Citation12,Citation13]. Poul Appell introduced the Appell hypergeometric series F1,F2,F3 and F4 of two variables that generalize the Gauss hypergeometric series 2F1 of one variable in 1880.

Jodar and Cortes [Citation14] investigated gamma and beta matrix function properties. Abdalla et al. [Citation15] defined the extended gamma and beta matrix functions. Rahul Goyal et al. [Citation16] studied the extended gamma and beta matrix functions using a two-parameters Mittag-Leffler matrix function. Mubeen et al. [Citation17] introduced the κ-gamma and κ-beta matrix functions. Khammash et al. [Citation18] introduced extended κ-gamma and κ-beta matrix functions. Many scholars have analysed these functions in recent years. Ravi Dwivedi et al. [Citation19] defined Appell’s hypergeometric matrix functions and discussed integral representations and regions of convergence. Ravi Dwivedi and Vivek Sahai [Citation20] presented infinite matrix summation formulas involving Appell matrix functions. M. Hidan and M. Abdalla [Citation21] discussed integral representations, transformation formulas, and series formulas for the second Appell hypergeometric matrix function. M. Abdalla et al. [Citation22] explored limit, some differentiation, summation and recursion formulas involving the second Appell function. Abdullah Altin et al. [Citation23] derived the integral representation and demonstrated that matrix differential equations satisfy the first Appell hypergeometric matrix functions. H. Abd-Elmageed et al. [Citation24] discussed generating matrix functions, recursion formulas, contiguous relations, differentiations and series for the first Appell hypergeometric matrix function. Verma and Yadav [Citation25] introduced the incomplete second Appell hypergeometric matrix functions. This study aims to introduce and investigate κ-Appell hypergeometric matrix functions using the definition of the κ-Pochhammer symbol matrix and κ-gamma matrix function as well as analyse integral representations, differential formulas, transformation formulas, and infinite matrix summation formulas. The structure of this paper is organized as follows. We introduce the κ-Appell hypergeometric matrix functions F1,κ,F2,κ,F3,κ, and F4,κ using κ-Pochhammer matrix symbols in Section 2. We provide integral representations for κ-Appell hypergeometric matrix functions in Section 3. We prove the transformation, infinite matrix summation formulas and some reduction formulas to demonstrate the relations for κ-hypergeometric matrix functions and κ-Appell matrix functions in Sections 4 and 5. Differentiation formulas for κ-Appell hypergeometric matrix functions F1,κ and F2,κ are derived in Section 6.

Throughout the paper, we use of the following notations:

CM×M=

Denotes the vector space of M-square matrices with M rows and M columns where entries are complex numbers C.

Q,Q,N,N,D and D=

Denotes the matrices in CM×M.

z,wC=

Denotes the complex variables.

κR+=

Denotes the positive real number.

m,nN+=

Denotes the positive natural number.

σ(Q)=

Denotes the spectrum of the matrix Q.

2F1(Q1,Q2;N1;z)=

Denotes the Gauss hypergeometric matrix function.

2F1,κ(Q,N;D;z)=

Denotes the κ-hypergeometric matrix functions.

pFq(Q1,,Qp;N1,,Nq;z)=

Denotes generalized hypergeometric matrix functions.

(Q)m=

Denotes the Pochhammer symbol of the matrix argument.

(Q)m,κ=

Denotes the Pochhammer κ-symbol of the matrix argument.

Γκ(Q)=

Denotes the κ-gamma matrix function.

Bκ(Q,N)=

Denotes the κ-beta matrix function.

F1(Q,N,N;D;z,w)=

Denotes the first Appell hypergeometric matrix functions of two variables.

F1,κ(Q,N,N;D;z,w)=

Denotes the first κ-Appell hypergeometric matrix functions of two variables.

F2(Q,N,N;D,D;z,w)=

Denotes the second Appell hypergeometric matrix functions of two variables.

F2,κ(Q,N,N;D,D;z,w)=

Denotes the second κ-Appell hypergeometric matrix functions of two variables.

F3(Q,Q,N,N;D;z,w)=

Denotes the third Appell hypergeometric matrix functions of two variables.

F3,κ(Q,Q,N,N;D;z,w)=

Denotes the third κ-Appell hypergeometric matrix functions of two variables.

F4(Q,N;D,D;z,w)=

Denotes the fourth Appell hypergeometric matrix functions of two variables.

F4,κ(Q,N;D,D;z,w)=

Denotes the fourth κ-Appell hypergeometric matrix functions of two variables.

The generalized hypergeometric matrix functions are defined as follows [Citation19]: (1) pFq(Q1,,Qp;N1,,Nq;z)= m0i=1p(Qi)mi=1q[(Nj)m]1zmm!,p=q+1,|z|<1,(1) where zC, mN+ and Qi,Nj are matrices in CM×M,1ip,1jq.  Let p and q be finite positive integers, such that Nj+mI is an invertible matrix for all integrals m0.

Remark 1.1:

We obtain the following Gauss hypergeometric function given the special case of Equation (2), when p=2 and q=1 [Citation14]: (2) 2F1(Q1,Q2;N1;z)= m0(Q1)m(Q2)m(N1)m1m!zm,(2) where (Q)m is the Pochhammer symbol of a matrix argument and expressed as (3) {(Q)m=Q(Q+I)(Q+2I)(Q+(m1)I)=Γ(Q+mI)Γ1(Q),m1,(Q)0=I,m=0.(3) Let CM×M be a vector space of M-square matrices with M rows and M columns where entries are complex numbers C. The Im(z) and Re(z) denote the imaginary and real parts of zC, respectively. For any matrix Q in CM×M, σ(Q) denotes the spectrum of the matrix Q and σ(Q)is the set of all eigenvalues of Q and defined in [Citation14] as follows: (4) α(Q)=max{Re(z):zσ(Q)},β(Q)=min{Re(z):zσ(Q)},(4) where α(Q) is referred to as the spectral abscissa of matrix Q and α(Q)=β(Q). The square matrix Q is considered positive stable if and only if Re(z)>0, zσ(Q).

A matrix norm is the vector norm on CM×M. ||Q|| denotes the norm of the matrix Q and the 2-norm for vectors is defined as follows: (5) ||Q||=sup||Qu|| 2||u|| 2=max{λ:λσ(QQ)},(5) where u is any vector in the Mth complex plane, ||u|| 2=(uu )12 is a Euclidean norm of u, and Q denotes the transposed conjugate of Q. 0 and I stand for the null and identity matrices in CM×M, respectively. Let Q matrix in CM×M,Ω is an open set of the complex plan with σ(Q)Ω, if ψ(z) and ϕ(z) are holomorphic functions of a complex variable z, which are defined in Ω, then from the properties of the matrix functional calculus (see [Citation26,p.558]), it follows that ψ(z)ϕ(z)=ϕ(z)ψ(z). Furthermore, in [Citation27], if the G matrix in CM×M, which σ(G)Ω, and if QG=GQ, then ψ(Q)ϕ(G)=ϕ(G)ψ(Q).

According to [Citation17], let (Q)m,κ be the Pochhammer κ-symbol of the matrix argument given by (6) (Q)m,κ=Q(Q+κI)(Q+2κI)(Q+(m1)κI)=Γκ(Q+mκI)Γκ1(Q),m1.(6)

Proposition 1.1:

[Citation28] The following identity holds for any κR+, zC and Q be matrix in CM×M: (7)  m0(Q)m,κzmm!=(1κz)Qκ,|z|<1,(7) where (Q)m,κ is the Pochhammer κ-symbol of the matrix argument defined in Equation (6).

Definition 1.1:

Let Q and N be two positive stable matrices in CM×M. The integral representation of the κ-gamma matrix function Γκ(Q) and the κ-beta matrix function Bκ(Q,N) defined by Mubeen et al. [Citation17], for κ>0, is as follows: (8) Γκ(Q)=0tQIetκκdt,Bκ(Q,N)=1κ01tQκI(1t)NκIdt.(8) Since the reciprocal κ-gamma function denoted by Γκ1(z)=1Γκ(z) is an entire function of the complex variable z. For any matrix Q in CM×M the image of Γκ1(z) acting on Q, denoted by Γκ1(Q), is the well-defined matrix for κ>0. Moreover, according to Mubeen et al. [Citation29], if Q is a matrix in CM×M such that (9) Q+nκI is the invertible matrix for every integer n0 and κ>0.(9) Then, by application of the matrix functional calculus,Γκ(Q) is invertible and its inverse coincides with Γκ1(Q) and (10)   Q(Q+κI)(Q+2κI)(Q+(m1)κI)Γκ1(Q+mκI)=Γκ1(Q),(10) where m1 and κ>0.

The relation between the Pochhammer κ-symbol of the matrix argument and the κ-gamma matrix function is expressed as follows [Citation17]: (11) (Q)m,κ=Γκ(Q+mκI)Γκ1(Q),m1 and κ>0.(11) The matrices Q and N are positive stable matrices and commuting matrices in CM×M (diagonalizable matrices such that QN=NQ) so that Q+nκI,N+nκI, and Q+N+nκI are the invertible matrices for every integer n0and κ>0. Then, we have [Citation17] (12) Bκ(Q,N)=Γκ(Q)Γκ(N)Γκ1(Q+N).(12) Mubeen et al. [Citation17] proved that the generalized κ-gamma matrix function for any positive stable matrix Q in CM×M is (13) Γκ(Q)=limmm!κm(mκ)QκI(Q)m,κ1,(13) where m1 is an integer,κ>0, and I is the identity matrix.

Definition 1.2:

Let κR+, zC, mN+ and Q,N and D be matrices in CM×M, such that D+mκI is the invertible matrix for all integrals m0. Then, we define the κ-hypergeometric matrix functions as follows [Citation28]: (14) 2F1,κ(Q,N;D;z)= m0(Q)m,κ(N)m,κ(D)m,κ1m!zm.(14) Appell hypergeometric matrix functions have been extensively investigated in recent years (see, [Citation19–24,Citation30–35]).

2. κ-Appell hypergeometric matrix function

We introduce the κ-Appell matrix functions of two variables in this section.

Definition 2.1:

Let κR+,z,wC,m,nN+ and Q,Q, N,N,D, D be matrices in CM×M, such that D+nκIand D+nκI are invertible matrices for all integrals n0. We then define the κ-Appell hypergeometric matrix functions as follows: (15) F1,κ(Q,N,N;D;z,w)= m,n0(Q)m+n,κ(N)m,κ(N)n,κ(D)m+n,κ1m!n!zmwn,(15) (16) F2,κ(Q,N,N;D,D;z,w)= m,n0(Q)m+n,κ(N)m,κ(N)n,κ(D)m,κ1(D)n,κ1m!n!zmwn,(16) (17) F3,κ(Q,Q,N,N;D;z,w)= m,n0(Q)m,κ(Q)n,κ(N)m,κ(N)n,κ(D)m+n,κ1m!n!zmwn,(17) (18) F4,κ(Q,N;D,D;z,w)= m,n0(Q)m+n,κ(N)m+n,κ(D)m,κ1(D)n,κ1m!n!zmwn,(18) where |z|<1κ,|w|<1κ;|z|+|w|<1κ;|z|<1κ,|w|<1κ;|z|+|w|<1κ, respectively.

Remark 2.1:

The special cases of κ-Appell matrix functions in Definition 2.1 are presented as follows:

(1) When κ=1, then κ-Appell matrix functions F1,κ(Q,N,N;D;z,w), F2,κ(Q,N,N;D,D;z,w),F3,κ(Q,Q,N,N;D;z,w),F4,κ(Q,N;D,D;z,w) reduces to Appell matrix functions F1(Q,N,N;D;z,w),F2(Q,N,N;D,D;z,w), F3(Q,Q,N,N;D;z,w),F4(Q,N;D,D;z,w) in [Citation19,Citation23,Citation36], as following form (19) F1(Q,N,N;D;z,w)= m,n0(Q)m+n(N)m(N)n(D)m+n1m!n!zmwn,(19) (20) F2(Q,N,N;D,D;z,w)= m,n0(Q)m+n(N)m(N)n(D)m1(D)n1m!n!zmwn,(20) (21) F3(Q,Q,N,N;D;z,w)= m,n0(Q)m(Q)n(N)m(N)n(D)m+n1m!n!zmwn,(21) (22) F4(Q,N;D,D;z,w)= m,n0(Q)m+n(N)m+n(D)m1(D)n1m!n!zmwn,(22) where |z|,|w|<1;|z|+|w|<1;|z|,|w|<1;|z|+|w|<1, respectively. Q,Q, N,N,D, D are matrices in CM×M, such that D+nI and D+nI are invertible matrices for all integrals n0.

(2) Definition 2.1 can be rewritten using Equations (6) and (14) as follows: (23) F1,κ(Q,N,N;D;z,w)= m0(Q)m,κ(N)m,κ(D)m,κ1m!2F1,k(Q+ mκI,N;D+ mκI;w)zm,(23) (24) F2,κ(Q,N,N;D,D;z,w)= m0(Q)m,κ(N)m,κ(D)m,κ1m!2F1,κ(Q+ mκI,N;D;w)zm,(24) (25) F3,κ(Q,Q,N,N;D;z,w)= m0(Q)m,κ(N)m,κ(D)m,κ1m!2F1,κ(Q,N;D+mκI;w)zm,(25) (26) F4,κ(Q,N;D,D;z,w)= m0(Q)m,κ(N)m,κ(D)m,κ1m!2F1,κ(Q+ mκI,N+mκI;D;w)zm,(26) where |z|<1κ,|w|<1κ;|z|+|w|<1κ;|z|<1κ,|w|<1κ;|z|+|w|<1κ, respectively.

Theorem 2.1:

Relationships between κ-Appell hypergeometric matrix functions and original Appell hypergeometric matrix functions are expressed as follows: (27) F1,κ(Q,N,N;D;z,w)=F1(Q/κ,N/κ,N/κ;D/κ;κz,κw),(27) (28) F2,κ(Q,N,N;D,D;z,w)=F2(Q/κ,N/κ,N/κ;D/κ,D/κ;κz,κw),(28) (29) F3,κ(Q,Q,N,N;D;z,w)=F3(Q/κ,Q/κ,N/κ,N/κ;D/κ;κz,κw),(29) (30) F4,κ(Q,N;D,D;z,w)=F4(Q/κ,N/κ;D/κ,D/κ;κz,κw),(30)

Proof. These relationships are direct consequences of the definition of the κ-Appell hypergeometric matrix functions and property (Q)n,κ=κn(Qκ)n.

3. Integral representation

The integral representations for κ-Appell hypergeometric matrix functions F1,κ, F2,κ,F3,κ and F4,κ, where κR+, are provided in this section.

Theorem 3.1:

Let κR+,z,wC, m,nN+ and Q,N,N and D be matrices in CM×M, such that QN=NQ,  ND=DN. Furthermore, D+nκI is an invertible matrix for all integrals n0. Suppose that Q,D and DQ are positively stable, and QD=DQ,QN=NQ, then the integral representations of F1,κ for |z|<1κ,|w|<1κ are defined as follows (31) F1,κ(Q,N,N;D;z,w)=1κΓκ(D)Γκ1(Q)Γκ1(DQ)×01tQκI(1t)DQκI(1κzt)Nκ(1κwt)Nκdt.(31)

Proof

. Let Q,D and DQ be positive stable, QD=DQ and QN=NQ. We then obtain the following formula using Equations (7) and (12): (32) (Q)m+n,κ[(D)m+n,κ]1=Γκ(D)Γκ(Q+(m+n)κI)Γκ1(Q)Γκ1(D+(m+n)κI)=Γκ(D)Γκ1(Q)Γκ1(DQ)κ×01tQ+(m+n)kIκI(1t)DQκIdt.(32) We also obtain the following formula using Equations (7), (15), and (32): F1,κ(Q,N,N;D;z,w)= m,n0Γκ(D)Γκ1(Q)Γκ1(DQ)κ×01tQκ+(m+n1)I(1t)DQκIdt×m,n0(N)m,κ(N)n,κm!n!zmwn (33) =1κΓκ(D)Γκ1(Q)Γκ1(DQ)×01tQκI(1t)DQκI(1κzt)Nκ(1κwt)Nκdt.(33)

Remark 3.1:

We obtain the integral representation of Appell’s F1 in ([Citation23,Citation36]) when κ1 in Theorem 3.1.

Theorem 3.2:

Let κR+,z,wC, and Q,N,N,D and D be matrices in CM×M, such that D+nκI and D+nκI are invertible matrices for all integrals n0. Suppose that N,N, D  and D are commutative matrices in CM×M, then ND=DN and ND=DN. Suppose that N,D and ND are positive stable for every integral n0, then the integral representation of F2,κ is defined as follows F2,κ(Q,N,N;D,D;z,w)=Γκ(D)Γκ1(N)Γκ1(DN)Γκ(D)Γκ1(N)Γκ1(DN)κ2 (34) ×0101tNκIsNκI(1t)DNκI(1s)DNκI(1κztκws)Qκdtds.(34)

Proof.

The following equation is according to the definition of the κ-Pochhammer matrix symbol and using Equation (7): (35) (N)m,κ(N)n,κ(D)m,κ1(D)n,κ1=Γκ(N+mκI)Γκ1(N)Γκ(N+nκI)Γκ1(N)Γκ1(D+nκI)Γκ(D)Γκ1(D+nκI)Γκ(D).(35) We can rewrite Equation (35) in the following form: (36) (N)m,κ(D)m,κ1=Bκ(N+mκI,DN)Γκ(D)Γκ1(N)Γκ1(DN)(N)n,κ(D)n,κ1=Bκ(N+nκI,DN)Γκ(D)Γκ1(N)Γκ1(D N).(36) We then obtain the following equation using Equation (36) in Equation (16): F2,κ(Q,N,N;D,D;z,w)=Γκ(D)Γκ1(N)Γκ1(DN)Γκ(D)Γκ1(N)Γκ1(DN)κ2×0101tNκIsNκI(1t)DNκI(1s)DNκIdtds× m,n0(Q)m+n,κ(zt)m(ws)nm!n!=Γκ(D)Γκ1(N)Γκ1(DN)Γκ(D)Γκ1(N)Γκ1(DN)κ2×0101tNκIsNκI(1t)DNκI(1s)DNκI×(1κztκws)Qκdtds.

Remark 3.2:

We obtain the integral representation of the second Appell hypergeometric matrix function F2 in [Citation19] when κ1.

Theorem 3.3:

Let κR+,z,wC, and Q,N,N,D, and D be matrices in CM×M, such that Q+nκID+nκI and D+nκI are invertible matrices for all integrals n0. Suppose that N and D are commutative matrices in CN×N, then ND=DN. The integral representation of F2,κ for |z|+|w|<1κ is defined as follows: (37) F2,κ(Q,N,N;D,D;z,w)=Γκ1(Q)0etκκtQI1F1,κ(N;D;ztκ)1F1,κ(N;D;wtκ)dt.(37)

Proof.

Replacing the integral representation of the κ-Pochhammer matrix symbol, which is attained from (8) and (11) in place of (Q)m+n,κ in Equation (16), we get (38) F2,κ(Q,N,N;D,D;z,w)=Γκ1(Q) m,n00etκκtQ+(m+n)κIIdt(N)m,κ(N)n,κ(D)m,κ1(D)n,κ1m!n!zmwn.(38) This equation can be rewritten as follows: (39) F2,κ(Q,N,N;D,D;z,w)=Γκ1(Q)[0etκκtQI( m0(N)m,κ(D)m,κ1m!(ztκ)m)( n0(N)n,κ(D)n,κ1n!(wtκ)n)dt]=Γκ1(Q)[0etκκtQI1F1,κ(N;D;ztκ)1F1,κ(N;D;wtκ)dt].(39)

Remark 3.3:

When κ1, then we get the integral representation of the second Appell hypergeometric matrix function F2 in [Citation21].

Theorem 3.4:

Let κR+,z,wC, and Q,Q,N,N, and D be matrices in CM×M, such that D+nκI is the invertible matrix for all integrals n0. Suppose that N,N and D are commutative matrices in CM×M, then the integral representations of F3,κ is defined as follows: (40) F3,κ(Q,Q,N,N;D;z,w)=Γκ(D)Γκ1(N)Γκ1(N)Γκ1(DNN)κ2×DtNκIsNκI(1κzt)Qκ(1κws)Qκ(1ts)DNNκIdtds,(40) where D={t0,s0,t+s1}.

Remark 3.4:

When κ1, then we get the integral representation of the Appell hypergeometric matrix function F3 in [Citation19].

Theorem 3.5:

Let κR+,z,wC, and Q,Q,N,N, and D be matrices in CM×M, such that D+nκI is invertible matrix for all integrals n0. Suppose that B,B and D are commutative matrices in CM×M, then the integral representations of F4,κ is defined as follows: (41) F4,κ(Q,N;D,D;z,w)=κQ+NκΓκ1(Q)Γκ1(N)κ200tQκIsNκIets0F1,κ(;D;κ2zts)0F1,κ(;D;κ2wts)dtds.(41) Formulas in Equations (40) and (41) can be proven in a similar way; hence, the details are omitted.

4. Transformation formulas

We intend to derive transformation formulas involving the κ-Appell functions F1,κ and F2,κ in the matrix setting.

Theorem 4.1:

For κR+, z,wC,  Q,N,N and D are commutative matrices in CM×M with D+nκI is invertible matrix for all integrals n0. Suppose that Q,D and DQ are positive stable, and QD=DQ, QN=NQ. For the matrix function F1,κ(Q,N,N;D;z,w), we have the following transformations: (42) F1,κ(Q,N,N;D;z,w)=(1 κz)Nκ (1 κw)NκF1,κ(DQ,N,N;D;z1κz,w1κw),(42) (43) F1,κ(Q,N,N;D;z,w)=(1 κz)QκF1,κ(Q,DNN,N;D;z1κz, zw1κz),(43) (44) F1,κ(Q,N,N;D;z,w)=(1 κw)QκF1,κ(Q,N,DNN;D; wz1κw, w1κw),(44) where |z1κz|<1κ,|w1κw|<1κ, |z|<1κ,|w|<1κ;|z1κz|<1κ,|zw1κz|<1κ, |z|<1κ,|w|<1κ; |wz1κw|<1κ,|w1κw|<1κ, |z|<1κ,|w|<1κ, respectively.

Proof.

We proved only Equation (42), since the others Equations (43) and (44) can be proven similarly.

Substituting t:=1t1 in the Equations (31) and (12) to obtain the following equation: (45) F1,κ(Q,N,N;D;z,w)=Γκ(D)Γκ1(Q)Γκ1(DQ)κ(1κz)Nκ(1κw)Nκ×01(1t1)QκIt1DQκI×(1+κzt11κz)Nκ(1+κwt11κw)Nκdt1=(1κz)Nκ(1κw)Nκ×F1,κ(DQ,N,N;D;z1κz,w1κw).(45) Furthermore, we can prove Equations (43) and (44) using the same argument proof of Equation (42) by substituting t :=t11κz+κt1z and t :=t11κw+κt1w in Equation (31) and Equation (12) to obtain Equations (43) and (44), respectively.

Theorem 4.2:

Let κR+, z,wC, m,nN+ and Q,N,N and D be matrices in CM×M, such that QN=NQ,  ND=DN and D+nκI is invertible matrix for all integrals n0. Suppose that Q,D and DQ are positive stable and commuting matrices then Bκ(Q,D Q)=Bκ(D Q,Q). For F1,κ(Q,N,N;D,D;z,w), we have transformations as follows: (46) F1,κ(Q,N,N;D;z,w)=(1κz)DQNκ(1κw)Nκ×F1,κ(DQ,DNN,N;D;z,wz1κw),(46) (47) F1,κ(Q,N,N;D;z,w)=(1κz)Nκ(1κw)DQNκ×F1,κ(DQ,N,DNN;D;wz1κz,w),(47)

Proof.

The first relation can be proven by setting t :=t11κz+κzt1 and t1:=1t2 in Equation (31) and using Equation (12), we get (48) F1,κ(Q,N,N;D;z,w)=Γκ(D)Γκ1(Q)Γκ1(DQ)κ(1κz)Qκ×01(1t2)QκIt2CQκI(1+κzκzt21κz)N+NDκ×(1+κzκzt2κw+κwt21κz)Nκdt2=Γκ(D)Γκ1(Q)Γκ1(DQ)κ(1κz)DQNκ(1κw)Nκ×01(1t2)QκIt2DQκI(1κzt2)N+NDκ×(1+κwt2κzt21κw)Nκdt2=(1κz)DQNκ(1κw)Nκ×F1,κ(DQ,DNN,N;D;z,wz1κw).(48) The second relation is proven using the same argument proof as the first relation by substituting t :=t11κw+κt1w and t1:=1t2 in Equation (31) and using Equation (12).

Theorem 4.3:

For κR+, z,wC, Q,N, N,D, and D are commutative matrices in CM×M, such that D+nκI and D+nκI are invertible matrices for all integrals n0. Suppose that N,N,D,D,DN, and D N are positively stable, then the matrix function F2,κ(Q,N,N;D,D;z,w) have transformations as follows: (49) F2,κ(Q,N,N;D,D;z,w)=(1κz)QκF2,κ(Q,DN,N;D,D;z1κz,w1κz),(49) (50) F2,κ(Q,N,N;D,D;z,w)=(1κw)QκF2,κ(Q,N,DN;D,D;z1κw,w1κw),(50) (51) F2,κ(Q,N,N;D,D;z,w)=(1κzκw)QκF2,k(Q,DN,DN;D,D;z1κzκw,w1κzκw).(51)

Proof.

In the first relation we taking t:=1t1, for the second relation s:=1s1 and, finally, for the third relation t:=1t1,s:=1s1 together in the double integral in Equation (34), we find Equations (49)–(51), respectively. These complete the proof.

Connections with some reduction formulas for Appell matrix functions F1,κ and F2,κ in terms of the 2F1,κ generalized hypergeometric matrix function presented in the next theorem.

Theorem 4.4:

let κR+, z,wC, then F1,κ(Q,N,N;D;z,w) and F2,κ(Q,N,N;D,D;z,w) be given in Definition 2.1 have the special cases given as follows (52) F1,κ(Q,N,N;D;z,w)=(1κz)Qκ2F1,κ(Q,N;N+N;zw1κz),(52) (53) F1,κ(Q,N,N;D;z,w)=(1κw)Qκ2F1,κ(Q,N;N+N;wz1κw),(53) (54) F2,κ(Q,N,N;D,D;z,w)=(1κz)Qκ2F1,κ(Q,N;D;w1κz),(54) (55) F2,κ(Q,N,N;D,D;z,w)=(1κw)Qκ2F1,κ(Q,N;D;z1κw),(55) where 2F1,κ is the generalized hypergeometric matrix function defined in [Citation28].

Proof.

We obtain the relations in Equations (52) and (53) if we set D=N+N in Equations (43) and (44), respectively. Similarly, we set D=N and D=N in Equations (49) and (50) to get the relations in Equations (54) and (55), respectively.

5. Infinite matrix summation formulas

In this section, we obtain certain infinite matrix summation formulas involving κ-Appell matrix functions. The infinite matrix summation formulas involving the κ-Appell matrix function F1,κare listed in the following theorem.

Theorem 5.1:

Let κR+, z,wC, Q,N,N and D be commutative matrices in CM×Msuch that D+nκI is invertible matrix for all integral n0 with |z1κt|<1κ,|w1κt|<1κ, and |t|<1κ. Then the following infinite matrix summation formulas involving the κ-Appell matrix function F1,κ(Q,N,N;D;z,w) hold: (56) r0(Q)r,κtrr!F1,κ(Q+rκI,N,N;D;z,w)=(1κt)QkF1,κ(Q,N,N;D;z1κt,w1κt),(56) where |z1κt|<1κ,|w1κt|<1κ, and |t|<1κ. (57) r0(Q)r,κ(κt)rr!F1,κ(Q+rκI,N,N+rκI;D+rκI;z,w)(N)r,κ(D)r,κ1=F1,κ(Q,N,N;D;z,w+κt),(57) where |z|<1κ,|w+κt|<1κ, |t|<1κ and ND=DN.

Proof.

By using Equation (15) in Equation (56), we obtain the following formula: (58) (1κt)QκF1,κ(Q,N,N;D;z1κt,w1κt)= m,n0(1κt)(Q+(m+n)κI)κ(Q)m+n,κ(N)m,κ(N)n,κ(D)m+n,κ1m!n!zmwn.(58) Using the following identity in Equation (58), we get r0(Q+(m+n)κI)r,κtrr!=(1κt)(Q+(m+n)κI)κ,|t|<1κ, (Q)m+n,κ(Q+(m+n)κI)r,κ=(Q)r,κ(Q+rκI)m+n,κ, (59) (1κt)QκF1,κ(Q,N,N;D;z1κt,w1κt)=m,n, r0(Q)r,κtrr!(Q+rκI)m+n,κ(N)n,κ(N)n,κ (D)m+n,κ1 m!n!zmwn= r0(Q)r,κtrr!F1,κ(Q+rκI,N,N;D;z,w).(59) The proof of Equation (56) is completed.

For Equation (57), we substitute Equation (15) in Equation (57), we get: (60) F1,κ(Q,N,N;D;z,w+κt)=m,n0(Q)m+n,κ(N)m,κ(N)n,κ(D)m+n,κ1m!n!(z)m(w+κt)n.(60) Using the series expansion (w+κt)n=r=0n(κt)rwnrn!(nr)!r! in Equation (60), we get F1,κ(Q,N,N;D;z,w+κt)=m,n,r0(κt)rr!(Q)m+n+r,κ(N)m,κ(N)n+r,κ(D)m+n+r,κ1m!n!(z)m(w)n=m,n,r0(κt)rr!(Q)r,κ(Q+rκI)m+n,κ(N)m,κ(N)r,κ(N+rκI)n,κ(D+rκI)m+n,κ1(D)r,κ1m!n!(z)m(w)n=r0(Q)r,κ(κt)rr!F1,κ(Q+rκI,N,N+rκI;D+rκI;z,w)(N)r,κ(D)r,κ1.

Remark 5.1:

When κ1 in Equation (56), then we get infinite matrix summation formulas of F1(Q,N,N;D;z,w) in [Citation20,Citation24]. Moreover, when κ1 in Equation (57), then we get infinite matrix summation formulas of F1(Q,Q,N,N;D;z,w) in [Citation20].

The list of infinite matrix summation formulas associated with the κ-Appell matrix function F2,κ are presented in the following theorem. Since the proofs are similar to Theorem 5.1, we omit them.

Theorem 5.2:

Let κR+, z,wC,Q,N,N,D, and D be commutative matrices in CM×M, with D+nκI and D+nκI are invertible matrixes for all integrals n0. Then the following infinite matrix summation formulas hold for the κ-Appell matrix function F2,κ: (61) r0(Q)r,κtrr!F2,κ(Q+rκI,N,N;D,D;z,w)=(1κt)QκF2,κ(Q,N,N;D,D;z1κt,w1κt),(61) where |z1κt|+|w1κt|<1κ, and |t|<1κ. (62) r0(N)r,κtrr!F2,κ(Q,N+rκI,N;D,D;z,w)=(1κt)NκF2,κ(Q,N,N;D,D;z1κt,w),(62) where |z1κt|+|w|<1κ, |t|<1κ and QN=NQ. (63) r0(Q)r,κ(κt)rr!F2,κ(Q+rκI,N,N+rκI;D,D+rκI;z,w)(N)r,κ(D)r,κ1=F2,κ(Q,N,N;D,D;z,w+κt),(63) where |z|+|w+κt|<1κ, |t|<1κ and ND=DN, ND=DN.

Remark 5.2:

The proofs are similar to Theorem 5.1, for proof Equation (62) using the matrix identities r0(N+mκI)r,κtrr!=(1κt)(N+mκI)k,|t|<1κ, (N)m,κ(N+mκI)r,κ=(N)r,κ(N+rκI)m,κ.When κ1, then we get infinite matrix summation formulas of F2(A,N,N;D,D;z,w) in [Citation20].

Theorem 5.3:

Let κR+, z,wC,  Q,Q,N, N,and D  be matrices in CM×M, with D+nκI is invertible matrix for all integrals n0, and  QQ=QQ. Then the following infinite matrix summation formulas hold for κ-Appell matrix function F3,κ: (64) r0(Q)r,κ(t)rr!F3,κ(Q,rκI,N,N;D;z,(1+κt)wκt)=(1+κt)QκF3,κ(Q,Q,N,N;D;z,w),(64) where |z|<1κ,|(1+κt)wκt|<1κ and |t|<1κ. (65) r0(Q)r,κ(κt)rr!F3,κ(Q+rκI,Q,N+rκI,N;D+rκI;z,w)(D)r,κ1(N)r,κ=F3,κ(Q,Q,N,N;D;z+κt,w),(65) where |z+κt|<1κ,|w|<1κ, |t|<1κ and QN=NQ, QN=NQ.

Proof.

By using Equation (17) and the identity (rκI)n,κ=(κ)nr!(rn)!, we get r0(Q)r,κ(t)rr!F3,κ(Q,rκI,N,N;D;z,(1+κt)wκt)=m,κ,r=0n=0r(Q)r,κ(t)rn(rn)!(Q)m,κ(N)m,κ(N)n,κ(D)m+n,κ1m!n!(z)m(1+κt)w)n =m,n,κ,r0(Q)n+r,κ(t)r(r)!(Q)m,κ(N)m,κ(N)n,κ(D)m+n,κ1m!n!zmwn(1+κt)n =m,n,κ,r0(Q+nκI)r,κ(t)r(r)!(Q)m,κ(Q)n,κ(N)n,κ(N)n,κ(D)m+n,κ1m!n!zmwn(1+κt)n =m,n,κ0(1+κt)Qκ(Q)m,κ(Q)n,κ(N)m,κ(N)n,κ(D)m+n,κ1m!n!zmwn =(1+κt)QκF3,κ(Q,Q,N,N;D;z,w).This completes the proof of Equation (64).

We notice that the proof of the formula in Equation (65) is similar to proof formula in Equation (57).

Remark 5.3:

When κ1, then we get infinite matrix summation formulas of F3(Q,Q,N,N;D;z,w) in [Citation20].

Theorem 5.4:

Let κR+, z,wC, Q,N, D, and Dbe matrices in CM×M with D+nκI and D+nκI are invertible matrixes for all integrals n0. Then the following infinite matrix summation formulas hold for the κ-Appell matrix function F4,κ: (66) r0(Q)r,κ(N)r,κ(κt)rr!F4,κ(Q+rκI,N+rκI;D,D+rκI;z,w)(D)r,κ1=F4,κ(Q,N;D,D;z,w+κt),(66) where QN=NQ, |z|+|w+κt|<1κ.

Proof.

The proof is similar to Equation (57).

Remark 5.4:

When κ1, then we get infinite matrix summation formulas of F4(Q,Q,N,N;D;z,w) in [Citation20].

6. Differentiation formulas

In this section, we establish some differentiation formulas for the κ-Appell matrix functions F1,κand F2,κ. In the sequel, the notation DznF=(dFdz)n will be used.

Theorem 6.1:

Let κR+,z,wC, Q, N,Nand D be positive stable matrices in CM×M, such that D+nκI and D+nκI are invertible matrices for all integrals n0. Then, for |z|<1κ,|w|<1κ the differentiation formulas of F1,κ are defined as follows: (67) Dzn[F1,κ(Q,N,N;D;z,w)]=(Q)n,κ(N)n,κ[(D)n,κ]1F1,κ(Q+nκI,N+nκI,N;D+nκI;z,w),(67) (68) Dzn[zQκ+(n1)IF1,κ(Q,N,N;D;z,zw)]=1κnzQκI(Q)n,κF1,κ(Q+nκI,N,N;D;z,zw),(68) (69) Dwn[wNκ+(n1)IF1,κ(Q,N,N;D;z,w)]=1κnwNκI(N)n,κF1,κ(Q,N,N+nκI;D;z,w).(69)

Proof.

These formulas can be established using the series expansions of F1,κ(Q,N,N;D;z,w) in Equation (15). Here we prove Formula (68), the other differentiation formulas can be proven in a similar manner. Dzn[zQκ+(n1)IF1,κ(Q,N,N;D;z,zw)]=s,r0(Q)s+r,κ(N)s,κ(N)r,κ(D)s+r,κ1s!r!wrDzn[zQ+(n1+s+r)κIk]=1κns,r0(Q)s+r,κ(N)s,κ(N)r,κ(D)s+r,κ1s!r!wr×(Q+(s+r)κI)n,κzQ+(s+r1)κIk.Using the κ-Pochhammer matrix identity (Q)s+r,κ(Q+(s+r)κI)n,κ=(Q)n,κ(Q+nκI)s+r,κ, we get Dzn[zQκ+(n1)IF1,κ(Q,N,N;D;z,zw)]=1κn(Q)n,κs,r0(Q+nκI)s+r,κ(N)s,κ(N)r,κ(D)s+r,κ1s!r!wrzQ+(s+r1)κIκ=1κn(Q)n,κzQκIF1,κ(Q+nκI,N,N;D;z,zw).

Remark 6.1:

When κ1, then we obtain differentiation formulas of F1 in [Citation24].

Theorem 6.2:

Let κR+,z,wC and Q,N,N,D and D be positive stable matrices in CM×M, such that D+nκI and D+nκIare invertible matrices for all integrals n0. Then, for QN=NQ and DD=DD the differentiation formulas of F2,κ are defined as the following form: (70) Dzn[F2,κ(Q,N,N;D,D;z,w)]=(Q)n,κ(N)n,κ[(D)n,κ]1[F2,κ(Q+nκI,N+nκI,N;D+nκI,C;z,w)],(70) (71) Dwn[F2,κ(Q,N,N;D,D;z,w)]=(Q)n,κ(N)n,κ[(D)n,κ]1[F2,κ(Q+nκI,N,N+nκI;D,D+nκI;z,w)],(71) (72) Dwn[wQκ+(n1)IF2,κ(Q,N,N;D,D;z,w)]=1κnwQκI(Q)n,κ[F2,κ(Q+nκI,N,N;D,D;z,w)],(72) (73) Dwn[wNκ+(n1)IF2,κ(Q,N,N;D,D;z,w)]=1κnwNκI(N)n,κ[F2,κ(Q,N,N+nκI;D,D;z,w)].(73)

Proof.

These formulas can be established using the series expansions of F2,κ(Q,N,N;D;z,w) in Equation (16). Proof of the differentiation formulas are similar that of Theorem 6.1.

Remark 6.2:

When κ1, then we get differentiation formulas of F2 in [Citation22].

7. Conclusion

The κ-Appell hypergeometric functions are a generalization of the standard hypergeometric functions and are used in a variety of fields, such as physics, engineering, and mathematics [Citation6–11]. Their applications include solving differential equations, computing integrals, modelling various phenomena, such as wave propagation, and particularly obtaining exact solutions for various problems in quantum mechanics [Citation12,Citation13]. Additionally, they are related to other special functions, such as Meijer G-function and Fox H-function, which also have important applications in various areas of science and engineering. A recent surge in research has occurred on extend the classical Appell hypergeometric functions to the matrix setting, with many authors contributing to this field of study.

This work is devoted to the study of κ-Appell hypergeometric matrix functions within the analysis. This study is assumed to be the improvement and generalization of the scalar case [Citation30,Citation33,Citation37], in which the matrix case has never been investigated. If we take κ1, we can obtain some results to reduce the classical Appell hypergeometric functions F1,F2,F3, and F4 in [Citation19–24,Citation36]. In this work, we introduced the κ-Appell hypergeometric matrix functions and further investigated their mathematical properties, including integral representation, differential formulas, transformation formulas and infinite matrix summation formulas. The results are novel and will be valuable in future research.

Interesting problems arise from this work. Future research in this area must focus on exploring a κ-generalization of other special functions, similar to what was performed for the scalar case in references [Citation38–41]. Such problems offer researchers a wealth of opportunities to expand this new area.

Acknowledgements

All authors are also indebted to the anonymous reviewers for their helpful, valuable comments and suggestions to improve this manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

  • Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives: theory and applications. Yverdon: Gordon & Breach; 1993.
  • Mathai AM, Saxena RK. Generalized hypergeometric functions with applications in statistics and physical sciences. Berlin: Springer; 1973.
  • Kiryakova V. Generalized fractional calculus and applications. New York: Wiley; 1994.
  • Ata E, Kıymaz IO. A study on certain properties of generalized special functions defined by Fox-Wright function. Appl Math Nonlinear Sci. 2020;5(1):147–162. doi:10.2478/amns.2020.1.00014
  • Ata E, Kıymaz OI. Generalized gamma, beta and hypergeometric functions defined by Wright function and applications to fractional differential equations. Cumhuriyet Sci J. 2022;43(4):684–695.
  • Saad N, Hall RL. Integrals containing confluent hypergeometric functions with applications to perturbed singular potentials. J Phys A Math Gen. 2003;36(28):7771–7788. doi:10.1088/0305-4470/36/28/307
  • Loebbert F, Müller D, Münkler H. Yangian bootstrap for conformal Feynman integrals. Phys Rev D. 2020;101(6):66006.
  • Tewari SP, Dhingra G, Silotia P. Collective dynamics of a nano-fluid: Fullerene, C60. Int J Mod Phys B. 2010;24(22):4281–4292. doi:10.1142/S0217979210055974
  • el abidine Bentalha Z. Representation of the Coulomb matrix elements by means of Appell hypergeometric function F2. Math Phys Anal Geom. 2018;21(2):1–10. doi:10.1007/s11040-018-9267-3
  • Fleischer J, Jegerlehner F, Tarasov OV. A new hypergeometric representation of one-loop scalar integrals in d dimensions. Nucl Phys B. 2003;672(1–2):303–328. doi:10.1016/j.nuclphysb.2003.09.004
  • Saad N, Hall RL. Closed-form sums for some perturbation series involving hypergeometric functions. J Phys A Math Gen. 2002;35(18):4105–4123. doi:10.1088/0305-4470/35/18/308
  • Slater LJ. Generalized hypergeometric functions. Cambridge: Cambridge University Press; 1966.
  • Landau LD, Lifshitz EM. Quantum mechanics: non-relativistic theory. London: Pergamon Press; 1981.
  • Jódar L, Cortés JC. On the hypergeometric matrix function. J Comput Appl Math. 1998;99(1–2):205–217. doi:10.1016/S0377-0427(98)00158-7
  • Abdalla M, Bakhet A. Extension of beta matrix function. Asian J Math Comput Res. 2016;9:253–264.
  • Goyal R, Agarwal P, Oros GI, et al. Extended beta and gamma matrix functions via 2-parameter Mittag-Leffler matrix function. Mathematics. 2022;10(6):892. doi:10.3390/math10060892
  • Mubeen S, Rahman G, Arshad M. k-Gamma, k-Beta matrix functions and their properties. J Math Comput Sci. 2015;5(5):647–657.
  • Khammash GS, Agarwal P, Choi J. Extended k-gamma and k-beta functions of matrix arguments. Mathematics. 2020;8(10):1715. doi:10.3390/math8101715
  • Dwivedi R, Sahai V. On the hypergeometric matrix functions of two variables. Linear Multilinear Algebr. 2018;66(9):1819–1837. doi:10.1080/03081087.2017.1373732
  • Dwivedi R, Sahai V. A note on the Appell matrix functions. Quaest Math. 2020;43(3):321–334. doi:10.2989/16073606.2019.1577309
  • Hidan M, Abdalla M. A note on the Appell hypergeometric matrix function F2. Math Probl Eng. 2020;2020:1–6. doi:10.1155/2020/6058987
  • Abdalla M, Abd-Elmageed H, Abul-Ez M, et al. Further investigations on the two variables second Appell hypergeometric matrix function. Quaest Math. 2022;45(7):1–18.
  • Altin A, Çekim B, Şahin R. On the matrix versions of Appell hypergeometric functions. Quaest Math. 2014;37(1):31–38. doi:10.2989/16073606.2013.779955
  • Abd-Elmageed H, Abdalla M, Abul-Ez M, et al. Some results on the first Appell matrix function F1(A,B,B′,C;z,w). Linear Multilinear Algebr. 2020;68(2):278–292. doi:10.1080/03081087.2018.1502254
  • Verma A, Yadav S. On the incomplete second Appell hypergeometric matrix functions. Linear Multilinear Algebr. 2021;69(9):1747–1760. doi:10.1080/03081087.2019.1640178
  • Dunford N, Schwartz J. Linear operators. New York: Interscience; 1957.
  • Bakhet A, Jiao Y, He F. On the Wright hypergeometric matrix functions and their fractional calculus. Integr Transform Spec Funct. 2019;30(2):138–156. doi:10.1080/10652469.2018.1543669
  • Rahman G, Ghaffar A, Purohit SD, et al. On the hypergeometic matrix k-functions. Bull Math Anal Appl. 2016;8(4):98–111.
  • Mubeen S, Arshad M, Rahman G. Closed form general solution of the hypergeometric matrix differential equation. J Inequalities Spec Funct. 2016;7(1):39–52.
  • Mubeen S, Iqbal S, Rahman G. Contiguous function relations and an integral representation for Appell k-series F_(1,k). Int J Math Res. 2015;4(2):53–63. doi:10.18488/journal.24/2015.4.2/24.2.53.63
  • Jain S, Goyal R, Oros GI, et al. A study of generalized hypergeometric matrix functions via two-parameter Mittag-Leffler matrix function. Open Phys. 2022;20(1):730–739. doi:10.1515/phys-2022-0068
  • Rahman G, Mubeen S, Nisar KS. On generalized k-fractional derivative operator. AIMS Math. 2020;5(3):1936–1945. doi:10.3934/math.2020129
  • Yılmaz ÖG, Aktaş R, Taşdelen F. On some formulas for the K-analogue of appell functions and generating relations via K-fractional derivative. Fractal Fract. 2020;4(4):1–20.
  • Awan MU, Noor MA, Mihai MV, et al. K-fractional estimates of hermite–hadamard type inequalities involving k-Appell’s hypergeometric functions and applications. Fractal Fract. 2019;3(3):1–9.
  • Nagar DK, Nadarajah S. Appell’s hypergeometric functions of matrix arguments. Integr Transform Spec Funct. 2017;28(2):91–112. doi:10.1080/10652469.2016.1252762
  • Batahan RS, Metwally MS. Differential and integral operators on Appell’s matrix functions. Andalus Soc Appl Sci. 2009;3:7–25.
  • Onur Kıymaz I, Çetinkaya A, Praveen A. A study on the k-generalizations of some known functions and fractional operators. J Inequalities Spec Funct. 2017;8(4):31–41.
  • Çetinkaya A. The incomplete second Appell hypergeometric functions. Appl Math Comput. 2013;219:8332–8337.
  • Çetinkaya A, Yağbasan MB, Kıymaz O. The extended Srivastava’s triple hypergeometric functions and their integral representations. J Nonlinear Sci Appl. 2016;9(6):4860–4866. doi:10.22436/jnsa.009.06.121
  • Agarwal P, Cetinkaya A, JainA S, et al. S-generalized Mittag-Leffler function and its certain properties. Math Sci Appl E-Notes. 2019;7(2):139–148. doi:10.36753/mathenot.578638
  • Abdalla M, Boulaaras S, Akel M, et al. Certain fractional formulas of the extended k- hypergeometric functions. Adv Differ Equ. 2021;2021(1):1–10. doi:10.1186/s13662-021-03612-5