354
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Pathogenesis of Neurodegenerative Diseases and the Protective Role of Natural Bioactive Components

ORCID Icon, & ORCID Icon
Pages 20-32 | Received 07 Feb 2023, Accepted 11 Apr 2023, Published online: 15 May 2023
 

Abstract

Neurodegenerative diseases are a serious problem throughout the world. There are several causes of neurodegenerative diseases; these include genetic predisposition, accumulation of misfolded proteins, oxidative stress, neuroinflammation, and excitotoxicity. Oxidative stress increases the production of reactive oxygen species (ROS) that advance lipid peroxidation, DNA damage, and neuroinflammation. The cellular antioxidant system (superoxide dismutase, catalase, peroxidase, and reduced glutathione) plays a crucial role in scavenging free radicals. An imbalance in the defensive actions of antioxidants and overproduction of ROS intensify neurodegeneration. The formation of misfolded proteins, glutamate toxicity, oxidative stress, and cytokine imbalance promote the pathogenesis of Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Antioxidants are now attractive molecules to fight against neurodegeneration. Certain vitamins (A, E, C) and polyphenolic compounds (flavonoids) show excellent antioxidant properties. Diet is the major source of antioxidants. However, diet medicinal herbs are also rich sources of numerous flavonoids. Antioxidants prevent ROS-mediated neuronal degeneration in post-oxidative stress conditions. The present review is focused on the pathogenesis of neurodegenerative diseases and the protective role of antioxidants.

    KEY TEACHING POINTS

  • This review shows that multiple factors are directly or indirectly associated with the pathogenesis of neurodegenerative diseases.

  • Failure to cellular antioxidant capacity increases oxidative stress that intensifies neuroinflammation and disease progression.

  • Different vitamins, carotenoids, and flavonoids, having antioxidant capacity, can be considered protective agents.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

No financial grant was available. This review article was self-supported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.