Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 43, 2003 - Issue 3
44
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

GEOMETRIC OPTIMIZATION OF RADIATIVE ENCLOSURES THROUGH NONLINEAR PROGRAMMING

, &
Pages 203-219 | Published online: 02 Feb 2011
 

Abstract

This article introduces a methodology for designing the geometry of diffuse-walled radiant enclosures through nonlinear programming. In this application, the enclosure is represented parametrically using B-spline curves, while the radiosity distribution is solved by infinitesimal-area analysis. The enclosure geometry is repeatedly adjusted with a gradient-based minimization algorithm until a near-optimum solution is found. This approach requires far less design time than the forward "trial-and-error" methodology, and the quality of the final solution is usually much better. The methodology is demonstrated by optimizing the geometry of a 2-D radiant enclosure, with the objective of obtaining a desired radiosity distribution over a portion of the enclosure surface.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.