Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 55, 2003 - Issue 1
87
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Comparative Characteristics of Na0.5K0.5NbO3 Films on Pt by Pulsed Laser Deposition and Magnetron Sputtering

, , , &
Pages 769-779 | Published online: 18 Jun 2010
 

Abstract

Ferroelectric Na0.5K0.5NbO3 (NKN) thin films were grown on the Pt80Ir20 polycrystalline substrates by pulsed laser deposition (PLD) and radio frequency-magnetron sputtering (RF) technique using the same stoichiometric Na0.5K0.5NbO3 ceramic target. X-ray diffraction proved both PLD- and RF-made Na0.5K0.5NbO3/Pt80Ir20 films are single phase and have preferential c-axis orientation. Temperature dependence of dielectric permittivity reveals the presence of two phase transitions around 210 and 410°C. Capacitance vs. applied voltage C-V @ 100 kHz, I-V, and P-E hysteresis characteristics recorded for the vertical capacitive structures yielded loss tanδ = 0.026 and 0.016, tunability about 44.5 and 30% @ 100 kV/cm, Ohmic resistivity 6.7 × 1012 Ω·cm and 0.2 × 1012 Ω·cm, remnant polarization 11.7 and 9.7 μC/cm2, coercive field 28.0 and 94.6 kV/cm for PLD- and RF-films, respectively. Piezoelectric test carried out in hydrostatic conditions showed piezoelectric coefficient d H = 21 for PLD-NKN and 15 pC/N for RF-NKN film.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.