932
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Developmental Trajectory of Motor Deficits in Preschool Children with ADHD

, , ORCID Icon, , & ORCID Icon
 

ABSTRACT

Motor deficits persisting into childhood (>7 years) are associated with increased executive and cognitive dysfunction, likely due to parallel neural circuitry. This study assessed the longitudinal trajectory of motor deficits in preschool children with ADHD, compared to typically developing (TD) children, in order to identify individuals at risk for anomalous neurological development. Participants included 47 children (21 ADHD, 26 TD) ages 4-7 years who participated in three visits (V1, V2, V3), each one year apart (V1=48-71 months, V2=60-83 months, V3=72-95 months). Motor variables assessed included speed (finger tapping and sequencing), total overflow, and axial movements from the Revised Physical and Neurological Examination for Subtle Signs (PANESS). Effects for group, visit, and group-by-visit interaction were examined. There were significant effects for group (favoring TD) for finger tapping speed and total axial movements, visit (performance improving with age for all 4 variables), and a significant group-by-visit interaction for finger tapping speed. Motor speed (repetitive finger tapping) and quality of axial movements are sensitive markers of anomalous motor development associated with ADHD in children as young as 4 years. Conversely, motor overflow and finger sequencing speed may be less sensitive in preschool, due to ongoing wide variations in attainment of these milestones.

Acknowledgments

A portion of this study was presented at the Annual Meeting of the International Neuropsychological Society, February 4, 2017, New Orleans, Louisiana, USA. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of the Johns Hopkins ICTR, NCATS, or NIH.

Additional information

Funding

This work was supported by the National Institutes of Health: [Grant Numbers 1R01 HD068425, U54 HD079123, UL1 TR000424];Johns Hopkins Brain Sciences Institute.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.