179
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Focal Contact Clustering in Osteoblastic Cells under Mechanical Stresses: Microgravity and Cyclic Deformation

, , , , , , & show all
Pages 69-83 | Published online: 11 Jul 2009
 

Abstract

We quantitatively compared vinculin-related adhesion parameters in osteoblastic cells submitted to two opposing mechanical stresses: low deformation and frequency strain regimens (stretch conditions) and microgravity exposure (relaxed conditions). In both ROS 17/2.8 cells and rat primary osteoblastic cells, 1% cyclic deformations at 0.05 Hz for 10 min per day for seven days stimulated cell growth compared to static culture conditions, while relaxed ROS cells proliferated in a similar way to static cultures (BC). We studied the short-term (up to 24 h) adaptation of focal contact reorganization under these two conditions. Cyclic deformation induced a biphasic response comprising the formation of new focal contacts followed by clustering of these focal contacts in both ROS cells and primary osteoblasts. Microgravity exposure induced a reduction in focal contact number and clustering in ROS cells. To evaluate whether the proliferation (stretch) or survival (relaxed) status of ROS cells influences focal contact organization, we inhibited the ERK proliferative-dependent pathway. Inhibition of proliferation by PD98059 was partially reversed, but not fully restored by stretch. Stretch-induced clustering of vinculin-positive contacts also persisted in the presence of PD98059, whereas the increase in focal contact number was abolished. In conclusion, we show that focal contacts are mechanoeffectors, and we suggest that their morphologic organization might serve as a discriminant functional parameter between survival and proliferation status in ROS 17/2.8 osteoblastic cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.