2
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Comparative neurovirulence in lentiviral infections: The roles of viral molecular diversity and select proteases

, &
Pages 113-117 | Published online: 10 Jul 2009
 

Abstract

All lentiviruses infect the brain, causing chronic neurological disease in their respective hosts. To examine the relationship(s) between lentivirus molecular diversity and the development of neurological disease, we examined in vitroand in vivomodels of lentivirus neurovirulence using different recombinant viruses derived from human (HIV-1) and feline (FIV) immunodeficiency viruses. Both in vitroand in vivostudies of FIV neurovirulence showed that the FIV envelope derived from a neurovirulent strain was a principal determinant of neuropathogenesis, although systemic immunosuppression was also an integral feature of FIV neurovirulence. Studies of HIV-1 envelope sequences derived from brain or blood indicate that molecular diversity is greater in viruses from patients with HIV-associated dementia (HAD), compared to nondemented individuals. Moreover, the hypervariable V3 domain of HIVgp120, regardless of the HIV-1 clade from which it was derived, was an important region for mediating neurotoxicity in vitrobut the level of viral replication did not influence neurotoxicity. For both the HIV-1 and FIV envelopes and HIV-1 Tat, induction of matrix metalloproteinase (MMP)-2 in macrophages was a consistent finding. Neurotoxicity caused by supernatants from HIV-infected or transfected macrophages, containing MMP-2, was greater than direct neurotoxicity levels caused by direct exposure of neurons to virus in assays of total neuronal death, but not in assays of neuronal apoptosis. Proteinase-activated receptor (PAR)-1 and its ligand thrombin were also induced during HIV infection, chiefly on astrocytes. PAR-1 activation resulted in gliosis and neurobehavioral changes in an animal model and resulted in N-methyl-D-aspartate (NMDA) receptor-mediated neuronal death. These findings suggest that the lentivirus envelope, which is a domain of extensive molecular diversity in brain-derived lentivirus isolates, directly influences neuropathogenesis through the activation of select proteases, underscoring the importance of concentrating on individual viral genes and proteases in the development of neuroprotective agents for HIV-related neurological disease.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.