6
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Microvascular Structure and Function in Salt-Sensitive Hypertension

Pages 225-241 | Published online: 10 Jul 2009
 

Abstract

In many individuals with essential hypertension, dietary salt can further increase blood pressure by augmentation of an already elevated total peripheral resistance. There is little information on the microvascular changes that contribute to salt-sensitive hypertension in humans, but studies in the Dahl salt-sensitive rat have provided some knowledge of the microcirculation in this form of hypertension. These studies, most of which have used intravital microscopy or isolated vessel technology, are the focus of this review. The salt-induced exacerbation of hypertension in Dahl rats is due to a uniform increase in hemodynamic resistance throughout most of the peripheral vasculature. In the spinotrapezius muscle, this resistance increase is largely due to the intense constriction of proximal arterioles. The mechanisms responsible for this increased arteriolar tone include increased responsiveness to oxygen and a loss of tonic nitric oxide (NO) availability caused by reduced endothelial NO production and/or accelerated NO degradation by reactive oxygen species. Within the last decade, it has become increasingly clear that high salt intake can also lead to changes in microvascular structure and function in the absence of increased arterial pressure. This effect must also be considered when evaluating microvascular changes and their functional consequences in salt-sensitive hypertension. Microcirculation(2002) 9,225–241. doi: 10.1038/sj.mn.7800139

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.