17
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Role of Mitochondrial Carrier Protein Mrs3/4 in Iron Acquisition and Oxidative Stress Resistance of Cryptococcus neoformans

, &
Pages 581-591 | Published online: 09 Jul 2009
 

Abstract

Cryptococcus neoformans is a pathogenic basidiomycete that causes meningitis in immunocompromised patients. In this paper, we demonstrate that a previously described oxidant-sensitive mutant, oxy1, has constitutive ferric reductase and iron uptake, similar to a ferric reductase regulatory mutant, frr1. Through meiotic genetic analysis, we show that the two mutations are allelic. By complementation of frr1 with a genomic library, we isolated a gene, MRS3/4. The encoded protein is a putative solute transporter of the inner mitochondrial membrane. Disruption of this gene led to high ferric reductase, iron uptake and iron content, as well as increased sensitivity to hydrogen peroxide and slow growth in low iron medium. The disrupted gene is allelic with oxy1 and frr1. We sequenced the oxy1 and frr1 alleles of MRS3/4 and found that the frr1 mutation results in a premature stop codon, while the oxy1 mutation results in the substitution of a highly conserved glutamate residue with lysine. The Mrs3/4 protein appears to be involved in mitochondrial iron transport in eukaryotes. Resistance to strong oxidants requires stringent control of iron metabolism.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.