170
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fast direct conductivity transforms for TEM systems

 

Summary

In 1987, Nekut published in Geophysics a method that used the receding-image approximation of the time domain electromagnetic (TEM) response of a concentric loop system above a half-space to derive a simple, fast, direct transform that calculates resistivity as a function of depth. This method is by far the fastest of published transforms from TEM data to resistivity. Following this example, we make a further simplification that completely eliminates one intermediate step required by Nekut. His intermediate step was used to resolve differences between mirror depth (half the image depth) and the half-space diffusion depth. We simply use the half-space diffusion depth directly in Nekut’s receding image method without requiring a mirror-depth calculation and a further calculation of its associated correction. The result is an even faster direct resistivity transform method that exactly matches the published results of Nekut.

A further conceptual advance is immediately clear: the fast direct resistivity transform can be expanded to other common survey geometries such as coincident squareand circular-loop TEM systems. This is achieved through use of the diffusion depth with either direct forward modelling of the half-space or the mirror approximation. We explore this conceptual advantage and give an example of direct resistivity transforms for the Slingram geometry commonly used in electromagnetic surveys.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.