71
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

On Lie Algebras All of Whose Minimal Subalgebras Are Lower Modular

, &
Pages 4515-4533 | Received 01 Mar 2003, Accepted 01 Feb 2004, Published online: 31 Aug 2006
 

Abstract

The main purpose of this paper is to study Lie algebras L such that if a subalgebra U of L has a maximal subalgebra of dimension one then every maximal subalgebra of U has dimension one. Such an L is called lm(0)-algebra. This class of Lie algebras emerges when it is imposed on the lattice of subalgebras of a Lie algebra the condition that every atom is lower modular. We see that the effect of that condition is highly sensitive to the ground field F. If F is algebraically closed, then every Lie algebra is lm(0). By contrast, for every algebraically non-closed field there exist simple Lie algebras which are not lm(0). For the real field, the semisimple lm(0)-algebras are just the Lie algebras whose Killing form is negative-definite. Also, we study when the simple Lie algebras having a maximal subalgebra of codimension one are lm(0), provided that char(F) ≠ 2. Moreover, lm(0)-algebras lead us to consider certain other classes of Lie algebras and the largest ideal of an arbitrary Lie algebra L on which the action of every element of L is split, which might have some interest by themselves.

AMS Classification:

Acknowledgment

The authors are grateful to the referee for his/her suggestions. The third named author was supported by DGI Grant BFM2000-1049-C02-01, Spain.

Notes

#Communicated by I. Shestakov.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.