552
Views
69
CrossRef citations to date
0
Altmetric
Original Articles

Mathematical Modeling and Optimization of Two-Layer Sintering Process for Sinter Quality and Fuel Efficiency Using Genetic Algorithm

&
Pages 335-349 | Received 30 Jan 2004, Accepted 29 Jun 2004, Published online: 07 Feb 2007
 

ABSTRACT

Two-layer sintering by charging a green sinter mix with normal coke rate in the upper layer and reduced coke rate in the lower layer can substantially reduce the coke rate and improve the sinter quality by producing more uniform thermal profile throughout the bed height. The two-layer sintering process has been analyzed by numerical simulation using a detailed CFD-based model, considering all the important phenomena (i.e., gas-solid reaction, melting and solidification, flow through porous bed, heat, and mass transfer etc.). A genetic algorithm optimization technique is then applied to evaluate the optimum coke rate in the two layers of the bed to produce the ideal thermal profile and melting fraction in the sinter bed for optimum sinter quality. By this optimization method a high-quality sinter with minimum return fines can be achieved along with reduced coke rate. Application of genetic algorithm for this type of process optimization has several advantages over traditional optimization techniques, because it can identify the global optimum condition and perform multiobjective optimization very easily for a complex industrial process such as iron ore sintering.

ACKNOWLEDGMENTS

The authors are grateful to the management of TRDDC, Pune for the support and encouragement for this research work. This work was carried out as a collaborative research between Process Modeling group and Manufacturing Practice group of TRDDC/TCS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.