326
Views
57
CrossRef citations to date
0
Altmetric
Original Articles

Optimal Design of Alloy Steels Using Multiobjective Genetic Algorithms

, &
Pages 553-567 | Received 20 Apr 2004, Accepted 29 Jul 2004, Published online: 07 Feb 2007
 

ABSTRACT

Determining the optimal heat treatment regimen and the required weight percentages for the chemical composites to obtain the desired mechanical properties of steel is a challenging problem for the steel industry. To tackle what is in essence an optimization problem, several neural network-based models, which were developed in the early stage of this research work, are used to predict the mechanical properties of steel such as the tensile strength (TS), the reduction of area (ROA), and the elongation. Because these predictive models are generally data driven, such predictions should be treated carefully. In this research work, evolutionary multiobjective (EMO) optimization algorithms are exploited not only to obtain the targeted mechanical properties but also to consider the reliability of the predictions. To facilitate the implementation of a broad range of single-objective and multi-objective algorithms, a versatile Windows 2000®-based application is developed. The obtained results from the single-objective and the multiobjective optimization algorithms are presented and compared, and it is shown that the EMO techniques can be effectively used to deal with such optimization problems.

ACKNOWLEDGMENT

The authors thank the UK Engineering and Physical Sciences Research Council EPSRC for their financial support through the IMMPETUS Phase II Award GR/R70514/01.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.