562
Views
28
CrossRef citations to date
0
Altmetric
Original

OXIDATIVE MECHANISMS OF HEMOGLOBIN-BASED BLOOD SUBSTITUTES*

Pages 415-425 | Published online: 11 Jul 2009
 

Abstract

Chemically or genetically altered cell-free hemoglobin (Hb) has been developed as an oxygen carrying therapeutic. Site-directed modifications are introduced and serve to stabilize the protein molecules in a tetrameric and/or a polymeric functional form. Direct cytotoxic effects associated with cell-free Hb have been ascribed to redox reactions (involving either 1 or 2 electron steps) between the heme group and peroxides. These interactions are the basis of the pseudoperoxidase activity of Hb and can be cytotoxic when reactive species are formed at relatively high concentrations during inflammation and typically lead to cell death. Peroxides relevant to biological systems include hydrogen peroxide (H2O2), lipid hydroperoxides (LOOH), and peroxynitrite (ONOO). Reactions between Hb and peroxides form the ferryl oxidation state of the protein, analogous to compounds I and II formed in the catalytic cycle of many peroxidase enzymes. This higher oxidation state of the protein is a potent oxidant capable of promoting oxidative damage to most classes of biological molecules. Further complications are thought to arise through the disruption of key signaling pathways resulting from alteration of or destruction of important physiological mediators.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.