Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 19, 2002 - Issue 6
173
Views
25
CrossRef citations to date
0
Altmetric
Original

GIGANTEA AND SPINDLY GENES LINKED TO THE CLOCK PATHWAY THAT CONTROLS CIRCADIAN CHARACTERISTICS OF TRANSPIRATION IN ARABIDOPSIS

, , , &
Pages 1005-1022 | Received 10 Jun 2002, Accepted 21 Jul 2002, Published online: 07 Jul 2009
 

Abstract

Several “clock” genes that regulate the circadian system in Arabidopsis thaliana have been identified. The GIGANTEA (GI) gene has been shown to participate in the circadian system that is linked to overt rhythms in gene expression, leaf movements, hypocotyl elongation, and photoperiodic control of flowering in Arabidopsis. During continuous light (LL), circadian expression patterns in gi-2 mutants show reduced amplitudes and altered period lengths when compared with controls. Rhythms in stomatal function, such as transpiration, have been shown to be endogenous and persist in constant lighting conditions. In order to test for a physiologic variable that might be affected by the circadian clock via the GI gene, we compared circadian characteristics of transpiration between three Arabidopsis mutants (gi-2, spy-4, spy-4/gi-2) and wild-type (WT) controls in synchronized (LD for 2.5 d) and free-running (LL for 3 d) conditions. Each genotype showed a significant circadian rhythm in LD at p<0.001, with acrophases located near the middle of the daily 14h L-span, with average amplitudes for WT: 18.9%, gi-2: 16.1%, spy-4: 7.7%, and spy-4/gi-2: 5.3%. On the first day in LL, the circadian amplitude was dramatically reduced to 3.1% for gi-2 compared with WT (11.9%), while amplitudes for spy-4 (6.9%) and spy-4/gi-2 (5.7%) were not significantly changed from LD. The amplitude for gi-2 remained low during days 2 (4.2%) and 3 (2.1%) in LL, while it slowly dampened for the WT (8.6 and 6.6%). The amplitudes for spy-4 (6.6%) and spy-4/gi-2 (5.6%) on day 2 in LL were indistinguishable from the LD span, but finally dampened on day 3 in LL (1.9 and 2.3%, respectively). These data suggest that transpiration is a physiologic variable controlled by a circadian system that involves both the GI and SPY proteins.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.