116
Views
42
CrossRef citations to date
0
Altmetric
Original Article

Arsenic Trioxide Causes Redistribution of Cell Cycle, Caspase Activation, and GADD Expression in Human Colonic, Breast, and Pancreatic Cancer Cells

, Ph.D. , M.D., , Ph.D. , M.D. & , F.R.C.Path. , Ph.D.
Pages 389-400 | Published online: 18 Aug 2004
 

Abstract

Arsenic trioxide is valuable for treatment of promyelocytic leukemia, but less attention has been paid to its therapeutic potential for other cancers. In this study, the effects of arsenic trioxide were tested in human pancreatic (AsPC-1), colonic (HT-29), and breast (MCF-7) cancer cells. In all three cancer cell lines, arsenic trioxide inhibited proliferation in a concentration and time-dependent manner, as measured by 3H-methyl thymidine incorporation and cell counting. Coincident with inhibition of growth, arsenic trioxide induced marked morphologic changes, including reduced cytoplasmic volume, membrane blebbing, and nuclear condensation consistent with apoptosis. Propidium iodide DNA staining at 24 hours revealed cell cycle arrest in the G0/G1 phase and an increase in the S phase, while at 72 hr there was G2/M phase arrest with a marked increase in the sub-G0/G1, apoptotic cell population. The DNA fragmentation induced by arsenic trioxide was confirmed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay in all cell lines. Western blot analysis revealed activation of caspase -3, -7, and -9 by arsenic trioxide. Caspase-3 activity was confirmed by demonstrating cleavage of its downstream target, poly ADP-ribose polymerase (PARP). Expression of the antiapoptosis protein, Bcl-2, was time-dependently decreased. In contrast, arsenic trioxide markedly enhanced the expression of the p21 protein, GADD45 and GADD153, in a time-dependent manner. These findings suggest that arsenic trioxide has potential as a therapeutic agent for these cancers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.