377
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Effect of Diluents on Tablet Integrity and Controlled Drug Release

&
Pages 761-765 | Published online: 06 May 2000
 

Abstract

The objective of this study was to evaluate the effect of diluents and wax level on tablet integrity during heat treatment and dissolution for sustained-release formulations and the resultant effect on drug release. Dibasic calcium phosphate dihydrate (DCPD), microcrystalline cellulose (MCC), and lactose were evaluated for their effect on tablet integrity during drug dissolution and heat treatment in wax matrix formulations. A newly developed direct compression diluent, dibasic calcium phosphate anhydrous (DCPA), was also evaluated. Compritol® 888 ATO was used as the wax matrix material, with phenylpropanolamine hydrochloride (PPA) as a model drug. Tablets were made by direct compression and then subjected to heat treatment at 80°C for 30 min. The results showed that MCC, lactose, and DCPA could maintain tablets intact during heat treatment above the melting point of wax (70°C–75°C). However, DCPD tablets showed wax egress during the treatment. MCC tablets swelled and cracked during drug dissolution and resulted in quick release. DCPD and lactose tablets remained intact during dissolution and gave slower release than MCC tablets. DCPA tablets without heat treatment disintegrated very quickly and showed immediate release. In contrast, heat-treated DCPA tablets remained intact through the 24-hr dissolution test and only released about 80% PPA at 6 hr. In the investigation of wax level, DCPD was used as the diluent. The drug release rate decreased as the wax content increased from 15% to 81.25%. The dissolution data were best described by the Higuchi square-root-of-time model. Diluents showed various effects during heat treatment and drug dissolution. The integrity of the tablets was related to the drug release rate. Heat treatment retarded drug release if there was no wax egress.

Notes

* The DCPA material contained fine powders; 35-μ filters were not good enough to block the fine powders, and the filtrate showed much higher absorbance than expected. After passing through 0.2-μ filters, the absorbance correctly reflected the concentration of PPA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.