164
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Investigation of Some Commercially Available Spacer Devices for the Delivery of Glucocorticoid Steroids from a pMDI

, , &
Pages 401-412 | Published online: 30 Apr 2001
 

Abstract

Five commercially available spacers were investigated to determine their influence on the percentage of drug retained in the spacer device, percentage fine particle fraction (FPF), percentage deposited in the induction port, mass median aerodynamic diameter (MMAD), and geometric standard deviation (GSD). Betamethasone valerate (BMV) and triamcinolone acetonide (TAA) were used as model drugs in the pressurized metered dose inhaler (pMDI) formulations containing the propellant HFA 134a. The BMV was dissolved in an ethanol/HFA 134a system, and the TAA was suspended in HFA 134a using ethanol as a dispersing agent. The metering chamber volume of the valve was either 50 μl or 150μl. The spacer devices investigated included the ACE®, Aerochamber®, Azmacort®, Easivent®, and Ellipse® spacers. Each spacer device was attached to an Andersen Cascade Impactor powered by a vacuum pump. Cascade impaction data were used to derive the percentage drug deposited in the induction port, MMAD, GSD, and FPF. The BMV particles emitted from the spacers were finer than the TAA particles because the dissolved drug precipitated as the cosolvent evaporated. The TAA particles had significantly larger MMADs because many undissolved drug particles were contained within each droplet following actuation. After evaporation of the liquid continuous phase, the suspended drug aggregated to form larger agglomerates than those particles precipitated from the BMV pMDI solution droplets. The addition of a spacer device lowered the MMAD to less than 4.7 μm for particles from both the BMV pMDI solution and the TAA pMDI suspension. The addition of a spacer device also lowered the percentage drug deposited in the induction port. The FPF was significantly increased when a spacer device was used. The MMAD significantly decreased when a spacer device was added for the two model drugs when using the 150-μl metering valves, but the difference was not statistically significant when the 50- μl valves were used (P <. 05). The GSD was not influenced by the use of a spacer device. The use of a spacer device will enhance pMDI therapy by reducing the amount of drug deposited in the oropharyngeal region, which will lead to fewer instances of local and systemic side effects. In addition, the spacer devices investigated will allow a higher dose of drug to reach the deep lung, which may permit the use of lower dosage regimens with increased therapeutic efficacy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.