215
Views
23
CrossRef citations to date
0
Altmetric
Original

Study of the Technological Parameters of Ultrasonic Nebulization

, &
Pages 643-649 | Published online: 02 Jul 2010
 

Abstract

The principle of an ultrasonic nebulizer is based on the vibrations of a piezoelectric crystal driven by an alternating electrical field. These periodic vibrations are characterized by their frequency, their amplitude, and their intensity, which corresponds to the energy transmitted per surface unit. When the vibration intensity is sufficient, cavitation occurs, and droplets are generated. Ventilation enables airflow to cross the nebulizer and to expel the aerosol droplets. For a given nebulizer, the vibration frequency of the piezoelectric crystal is fixed, often in the range 1–2.5 MHz. In most cases, an adjustment in vibration intensity is possible by modifying vibration amplitude. The ventilation level is adjustable. The vibrations may be transmitted through a coupling liquid—commonly water—to a nebulizer cup containing the solution to be aerosolized. In this work, we studied the influence of the technological parameters of ultrasonic nebulization on nebulization quality. Our study was carried out with a 9% sodium chloride solution and a 2% protein solution (α1 protease inhibitor). Three different ultrasonic nebulizers were used. An increase in vibration frequency decreased the size of droplets emitted. The coupling liquid absorbed the energy produced by the ultrasonic vibrations and canceled out any heating of the solution, which is particularly interesting for thermosensitive drugs. An increase in vibration intensity did not modify the size of droplets emitted, but decreased nebulization time and raised the quantity of protein nebulized, thus improving performance. On the other hand, an increase in ventilation increased the size of emitted droplets and decreased nebulization time and the quantity of protein nebulized because more drug was lost on the walls of the nebulizer. High intensity associated with low ventilation favors drug delivery deep into the lungs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.