98
Views
16
CrossRef citations to date
0
Altmetric
Research Article

A Nifedipine Coground Mixture with Sodium Deoxycholate. I. Colloidal Particle Formation and Solid-State Analysis

, , , &
Pages 943-949 | Published online: 31 Jul 2001
 

Abstract

Sodium deoxycholate (DCNa) is a bile salt that forms multimolecular inclusion compounds with a variety of organic substances. In this study, complex formulation of DCNa with nifedipine, a poorly water soluble drug, by grinding was investigated. The coground mixture was prepared with a vibration rod mill, and its solid state was characterized using powder X-ray diffraction, differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. A laser diffraction particle size analyzer was also used to determine the particle size distribution curve in solution. When a nifedipine-DCNa (1:2 w/w) mixture coground for 30 min was dispersed into water and a pH 6.8 buffer solution, a semitransparent colloidal solution occurred immediately; 90% of the total particles formed in solution had a diameter less than 600 nm. Both powder X-ray diffraction peaks and DSC endothermic peak of nifedipine crystals were not found for the coground mixture, whereas a new exothermic peak was observed on DSC thermograms. The magnitude of this exothermic peak depended on the weight fraction of DCNa and the grinding time, indicating that nifedipine crystals changed into an amorphous state by complex formation with DCNa during the grinding process. In the FTIR spectrum of the coground mixture, the peaks of aromatic CH out-of-plane bend and dihydropyridine NH stretch of nifedipine were considerably weakened, suggesting that van der Waals interaction may be present between the drug and DCNa molecules. From these results, it is clear that the cogrinding method with DCNa is very useful for the formation of amorphous nifedipine in the solid state and the production of colloidal particles of the drug in solution.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.