849
Views
69
CrossRef citations to date
0
Altmetric
Research Article

Characterization of the Solubility and Dissolution Properties of Several New Rifampicin Polymorphs, Solvates, and Hydrates

, , , & , Ph.D.
Pages 1017-1030 | Published online: 30 Sep 2001
 

Abstract

Based on reports that tuberculosis is on the increase, this investigation into the physicochemical properties of rifampicin when recrystallized from various solvent systems was undertaken. Rifampicin is an essential component of the currently recommended regimen for treating tuberculosis, although relatively little is known about its solubility and dissolution behavior in relation to its solid-state properties. A rifampicin monohydrate, a rifampicin dihydrate, two amorphous forms, a 1:1 rifampicin:acetone solvate, and a 1:2 rifampicin:2-pyrrolidone solvate were isolated and characterized using spectral, thermal, and solubility measurements. The crystal forms were relatively unstable because except for the 2-pyrrolidone solvate, all the hydrated or solvated materials changed to amorphous forms after desolvation. Fourier transform infrared (FTIR) analysis confirmed the favorable three-dimensional organization of the pharmacophore to ensure antibacterial activity in all the crystal forms except the 2-pyrrolidone solvate. In the 2-pyrrolidone solvate, the strong IR signals of 2-pyrrolidone interfered with the vibrations of the ansa group. The 2-pyrrolidone solvate was the most soluble in phosphate buffer at pH 7.4. This solvate also had the highest solubility (1.58 mg/ml) and the fastest dissolution in water. In 0.1 M HCl, the dihydrate dissolved the quickest. A X-ray amorphous form (amorph II) was the least soluble and had the slowest dissolution rate because the powder was poorly wettable and very electrostatic.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.