185
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Comparison of Neural Network and Multiple Linear Regression as Dissolution Predictors

&
Pages 349-355 | Published online: 31 Mar 2003
 

Abstract

The predictive performance of an artificial neural network (NN) was compared with the first-order multiple linear regression (MLR) using mean dissolution data of 28 diltiazem immediate release tablet formulations. The performance was evaluated using “Weibull” function parameters alpha and beta. Weibull parameters were used as dissolution markers of the eight principal, mainly compositional, variables. The parameters were obtained by fitting the Weibull function to the mean (n = 12) dissolution profiles of 28 diltiazem hydrochloride tablet formulations. The generated set of 28 pairs of Weibull function parameters was evaluated for internal and external predictability using both the MLR and the artificial NN. A three-layered 8-5-2 feedforward NN was found to be an adequate descriptor of the dissolution data. Internal predictions were based on the data of 24 products. External predictions used the 24 product data to test four products not used in the training phase. The predictive performances of the two techniques were evaluated using bias (mean prediction error; MPE) and precision (mean absolute error; MAE). The study results suggested that, for the studied data set, NN is a superior internal and external predictor to MLR. The artificial NN predicted order of the formulation composition variables, influencing the dissolution parameters as follows: hydrogenated oil > microcrystallinecellulose > ethyl cellulose > eudragit > hydroxypropylcellulose > coat > hydroxypropylmethyl-cellulose > Speed.

Notes

# This paper represents the personal opinions of the authors and does not necessarily represent the views or policies of the U.S. Food and Drug Administration.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.