534
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Conditioning Following Powder Micronization: Influence on Particle Growth of Salbutamol Sulfate

, , &
Pages 1077-1084 | Published online: 17 Nov 2003
 

Abstract

Micronization is a high-energy process that induces changes in the crystallinity of materials. As a result, the crystalline structures on the particles’ surface are being destroyed and amorphous areas are formed. After micronization of salbutamol sulfate to be used in dry powder inhalers, only small amounts of amorphous material are produced. Nevertheless, even these small amounts can have important effects on the physical stability of the powder. The amorphous state is thermodynamically unstable and tends to convert to the stable, crystalline state. The recrystallization process of disordered regions on the particles’ surface leads to particle growth of milled particles. In this case, bridges of solid material are being formed between the individual particles, which leads to particle growth. This is an undesirable process, because particles for pulmonary administration are designed to range between 1 and 10 µm in diameter to exert respirative effect. In the present investigation, salbutamol sulfate is micronized by an air jet mill, and the generated products are exposed to different conditions. Thereafter, the best possible conditioning parameters and storage conditions for the micronized salbutamol sulfate are worked out and rated. The aim of this treatise is to demonstrate the importance of conditioning following micronization.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.