169
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Phase Behavior of Bis(Quaternary Ammonium Bromide)/Sodium Cholate/H2O System

, , , &
Pages 39-51 | Published online: 23 Aug 2007
 

Abstract

Interactions in an oppositely charged surfactant mixture composed of a gemini surfactant (bis(quaternary ammonium bromide)) and a bile salt (sodium cholate) in water were studied at 30°C. A combination of techniques was used including surface tension, conductometry, light scattering, light microscopy, and microelectrophoretic measurements. A strong dependence of the phase behavior on the molar ratio and actual concentration of surfactants was found. The interplay between electrostatic effects, geometry of molecules, and dissimilar separation of the hydrophobic and hydrophilic moieties in the surfactants dictate the interaction mode and the microstructures formed. Instead of precipitation, in the equivalent mixtures formation of complexes, mixed micelles, vesicles, coacervates, and solid crystalline phases have been observed. The extent of interacting forces in mixed micelles formed in equivalent mixtures was evaluated by regular solution theory. A relatively high negative value of interaction parameter indicated a strong attractive interaction between surfactants. The compositions of both mixed micelles and mixed monolayer are found to be almost equimolar.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.