Publication Cover
Drying Technology
An International Journal
Volume 22, 2004 - Issue 4
56
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A Theoretical Model for the Nongray Radiation Drying of Polyvinylalcohol/Water Solutions

&
Pages 853-875 | Published online: 06 Feb 2007
 

Abstract

A theoretical analysis of heat transfer and moisture variation was performed while a PVA solution was exposed to high-intensity nongray irradiation and/or air flow convection. Effective absorption coefficients were incorporated in the radiative transfer analysis. The influence of various radiation and convection parameters on the transfer of heat and moisture variation in the coated layers on an optically thick substrate was investigated. The effects of radiation and convection parameters on the transfer process were presented in terms of the rate of water content removal, heat transfer, and moisture distribution. Results were compared to those of drying when using convective heat. It is evident that the use of thermal radiation combined with convective heat will help in improving the drying rate. Numerical results show that both the radiative energy absorbed by the solution and the substrate and the distribution of water mass fraction in the solution are closely related to the rate of water removal from the solution during the process.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.