Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 36, 2001 - Issue 4
61
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

FEASIBILITY OF FLUIDIZED-BED BIOREACTOR FOR REMEDIATING WASTE GAS CONTAINING H2S OR NH3

, &
Pages 509-520 | Received 22 May 2000, Published online: 06 Feb 2007
 

Abstract

Pseudomonas putida for H2S and Arthrobacter oxydans for NH3 were immobilized with Ca-alginate and packed inside glass columns to form fluidized-bed bioreactors. The feasibility of the lab-scale bioreactor for the treatment of H2S or NH3 was examined. Phosphate salt, being added to the nutrient solution as buffer solution, may chelate with Ca2+ in the Ca-alginate beads, resulting in the disintegration of gel structure. When the buffer capacity of the phosphate solution was over the critical point of 33.5 mM/pH, all calcium ions in the bead were released and beads were broken. Increasing liquid flowrate and inlet gas concentration favored to H2S and NH3 removal. Carbon source addition was essential and facilitated malodorous removal for this system. Removal capacity increased with inlet concentration. However, increasing pattern was dependent of H2S or NH3. The result clearly indicated that bioreactor was suitable to be applied for the industry of livestock farm for removing wastegas containing H2S or NH3.

ACKNOWLEDGMENTS

This work is supported by National Science Council, Republic of China.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.