Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 39, 2004 - Issue 8
1,977
Views
252
CrossRef citations to date
0
Altmetric
Original Articles

A Review of the Occurrence and Fate of Naphthenic Acids in Aquatic Environments

&
Pages 1989-2010 | Received 25 Nov 2003, Published online: 06 Feb 2007
 

Abstract

Naphthenic acids are comprised of a large collection of saturated aliphatic and alicyclic carboxylic acids found in hydrocarbon deposits (petroleum, oil sands bitumen, and crude oils). Naphthenic acids enter surface water systems primarily through effluent discharge, but also through groundwater mixing and erosion of riverbank oil deposits. Of the possible environmental receptors (i.e., air, soil, and water), the most significant is water. Ambient levels of naphthenic acids in northern Alberta rivers in the Athabasca Oil Sands are generally below 1 mg L−1. However, tailings pond waters may contain as high as 110 mg L−1. The complexity of natural naphthenic acids in petroleum deposits poses an analytical challenge as reflected by the several techniques reported for quantitation of naphthenic acids in the environment. Although naphthenic acids are known to be persistent biomarkers used in identification of oil source maturation, little is established regarding their relative degradation pathways in aquatic environments. Published research related to the potential for microbiological degradation and adsorption to typical Athabasca Oil Sands soils reveal that naphthenic acids are likely to persist in the water column and, with prolonged exposure, accumulate in sediments. However, other than a very general knowledge of environmental persistence, the occurrence and fate of naphthenic acids has been sparsely studied. This article brings together some of those environmental persistence results, as well as detailed information regarding the origin of naphthenic acids in tailings ponds, chemistry and toxicological considerations, current analytical methods for aquatic sampling, and areas of future remediation research.

Acknowledgments

The authors thank Jon Gillies at the University of Saskatchewan for graduate student funding and Kerry Peru at Environment Canada, Saskatoon for technical support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.