Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 39, 2004 - Issue 10
390
Views
79
CrossRef citations to date
0
Altmetric
Original Articles

Sorption of Co(II), Ni(II), and Zn(II) on Biogenic Manganese Oxides Produced by a Mn-Oxidizing Fungus, Strain KR21-2

, , , , &
Pages 2641-2660 | Published online: 24 Jun 2011
 

Abstract

The characteristics of Co(II), Ni(II), and Zn(II) sorption on freshly produced biogenic Mn oxides by a Mn-oxidizing fungus, strain KR21-2, were investigated. The biogenic Mn oxides showed about 10-fold higher efficiencies for sorbing the metal ions than a synthetic Mn oxide (γ-MnO2) on the basis of unit weight and unit surface area. The order of sorption efficiency on the biogenic Mn oxides was Co(II) > Zn(II) > Ni(II), while that on the synthetic Mn oxide was Zn(II) > Co(II) > Ni(II). These sorption selectivities were confirmed by both sorption isotherms and competitive sorption experiments. Two-step extraction, using 10 mM CuSO4 solution for exchangeable sorbed ions and 10–20 mM hydroxylamine hydrochloride for ions bound to reducible Mn oxide phase, showed higher irreversibility of Co(II) and Ni(II) sorption on the biogenic Mn oxides while Zn(II) sorption was mostly reversible (Cu(II)-exchangeable). Sorptions of Co(II), Ni(II), and Zn(II) on the synthetic Mn oxide were, however, found to be mostly reversible. Higher irreversibility of Co(II) and Ni(II) sorption on the biogenic Mn oxides may partly explain higher accumulation of these metal ions in Mn oxide phases in natural environments. The results obtained in this study raise the possibility to applying the biogenic Mn oxide formation to treatment of water contaminated with toxic metal ions.

Acknowledgments

The authors are grateful to Dr. G. Yuan, Landcare Research, New Zealand, and an anonymous reviewer for their valuable help in revising the manuscript, and to Mrs. Anne Austin, Landcare Research for improving the English. This work was partly supported by a Grant-in-Aid for Young Scientists (B) (16710052) from the Ministry of Education, Culture, Sports, Science and Technology of Japan

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.