Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 40, 2005 - Issue 1
72
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Recovering Industrial Sludge-Derived Slag as Fine Aggregate

, &
Pages 193-202 | Published online: 06 Feb 2007
 

Abstract

This study presents the result of using melting to recover both industrial sludge slag (the main constituent of which is calcium fluoride) and water works sludge slag as fine aggregate in cement. The main characteristics of both slag and cement mortars were measured to evaluate the feasibility of using slag as aggregate. In this study, the slag replacement ratios were 0, 10, 20, 30, 40, and 50% (w/w), and the curing periods were 7, 28, and 90 days. Slag quality was determined according to the standards of fine aggregates in the ASTM specifications, and cement mortars with various slag replacement ratios were evaluated based on their compressive strength, and Toxicity Characteristic Leaching Procedure (TCLP). The crushed slag produced in this study met the ASTM standards for fine aggregate, including gravity, unit weight, absorption, and grading, and the TCLP leached concentrations are far below existing limits, establishing the safety and suitability of slag as fine aggregate. The TCLP leached concentrations of slag and cement mortar were not significantly related to the replacement ratio, and declined with increasing curing period, revealing that the hydration strongly influenced metal leaching. The compressive strength test results of the cement mortars demonstrated that the optimal replacement ratio for maximizing compressive strength was 40%. This study also discussed the effects of replacement ratio and curing periods on cement mortars.

ACKNOWLEDGMENT

The authors would like to thank the National Science Council of the Republic of China, Taiwan for financially supporting this research under contract No. NSC 89-2211-E-002-079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.