Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 40, 2005 - Issue 8
378
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Pyrolysis of Foundry Sand Resins: A Determination of Organic Products by Mass Spectrometry

&
Pages 1557-1567 | Received 27 Oct 2004, Published online: 20 Aug 2010
 

Pyrolysis-gas chromatography-mass spectrometry (MS) was used to identify the major organic products produced by pyrolysis of three foundry sand resins: (i) Novolac and (ii) phenolic urethane (PU) (both phenol-formaldehyde based resins) and (iii) furan (furfuryl alcohol based resin). These resins are used in the metal casting industry as a “sand binder” for making cores (used to produce cavities in molds) and molds for nonferrous castings. During the casting process, the cores and molds are subjected to intense heat from the molten metal. As a result, the organic resins undergo thermal decomposition and produce a number of complex organic compounds. In this study, the organics were tentatively identified by MS after pyrolysis of the resins at 750°C. The major thermal decomposition products from the Novolac, PU, and furan resins were derivatives of phenol, benzene, and furan, respectively. Compounds identified that are of potential environmental concern were benzene, toluene, phenol, o- and p-xylene, o- and m-cresol, and polycyclic aromatic hydrocarbons. Pyrolysis of the Novolac resin resulted in the generation of the most compounds of environmental concern. Because there is interest in beneficially using foundry molding sands in manufactured soils and other agricultural products, it is necessary that organic thermal decomposition products be identified to ensure environmental protection.

ACKNOWLEDGMENTS

We thank Barry Francis for conducting the pyrolysis-gas chromatography-mass spectrometry.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.