51
Views
2
CrossRef citations to date
0
Altmetric
Original

EFFECTS OF VARIATION IN INTERCELLULAR ELECTRICAL COUPLING ON SYNAPTIC POTENTIALS IN SMOOTH MUSCLE: A COMPUTATIONAL STUDY

&
Pages 193-205 | Published online: 30 Jun 2001
 

Abstract

We have computationally explored the effect of quantitative variations in the extent of cell-to-cell electrical coupling on the synaptic potentials generated in smooth muscle. Neuronally produced spontaneous excitatory junction potentials (SEJPs) generated in a cubical “bidomain” model of syncytial tissue were simulated computationally. It was found that SEJP properties vary conspicuously as the principal parameter of interest, the cell–to–cell coupling resistance, Ri, is altered. For example, on increasing Ri, SEJP peak amplitudes at node zero (the node of generation) increase dramatically, while amplitudes at nodes 1 and 2 (which are passively depolarized) become progressively lower fractions of the amplitude of the zeroeth-node SEJP. The time to peak of the SEJPs also increases concomitantly when Ri is elevated. These observations indicate the nature of variations in synaptic potentials that would be expected under conditions of altered intercellular electrical coupling in smooth muscle. We discuss their implications in relation to the physiology of syncytial tissue, and in the context of recent experimental observations made in the presence of a putative inhibitor of cell–to–cell electrical coupling, 1-heptanol.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.