27
Views
5
CrossRef citations to date
0
Altmetric
Original

Sine Wave Extremely Low Frequency Magnetic Fields Protect Chick Embryos Against UV-Induced Death

, , &
Pages 113-124 | Published online: 07 Jul 2009
 

Abstract

Four-day-old chicken embryos were exposed to extremely low frequency (ELF) magnetic fields (MF) prior to UV exposure (75 min, predominantly UV-C, 0.4 mW/cm2) to investigate possible MF-mediated protection against lethal effects of UV. The UV exposure typically resulted in a 20% survival rate (as judged by beating hearts) in sham-exposed embryos 3 h postexposure. In contrast, exposure to a 50 (10, 50, or 100 µT) or 60 Hz (10 µT) vertical MF caused a significant increase in survival rate, observed only 30 min after UV exposure. No difference in protection levels was seen between these exposure intensities. A horizontal 50 Hz MF (10, 50, or 100 µT) did not result in the general protection against UV-induced death observed for vertical fields, suggesting that the size of the induced electric field (which differs between horizontal and vertical exposure) is important for the MF-induced protection. To explore the molecular mechanisms involved in this effect, immunoblotting experiments with an antibody against the inducible form of hsp70 were performed. These showed that application of MF (50 Hz, 200 µT, 1 h) induced hsp70 expression in human K562 cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.