Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 39, 2004 - Issue 5-6
42
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Degradation of RPA 202248 [U-14C-phenyl]-α(-(cyclopropylcarbonyl)-2-(methylsulfonyl)-β-oxo-4-(trifluromethyl)benzenepropanenitrile), the Primary Degradation Product of Isoxaflutole, in an Outdoor Aquatic Microcosm System

, , &
Pages 725-736 | Received 24 May 2004, Published online: 24 Jun 2011
 

Abstract

Isoxaflutole, the active ingredient in BALANCE® WDG and BALANCE® PRO corn herbicides and a co-formulant with the herbicide flufenacet in the product EPIC™, is readily degraded in soil and water to RPA 202248 α(-(cyclopropylcarbonyl)-2-(methylsulfonyl)-β-oxo-4-(trifluromethyl)benzenepropanenitrile). Because RPA 202248 is responsible at the molecular level for isoxaflutole's herbicidal activity it is important to understand the environmental behavior of the degradation product. Laboratory studies suggest that RPA 202248 is stable to hydrolysis and photolysis in aqueous systems and hence poses a possible environmental concern. As part of a program of work towards understanding the actual field situation, an outdoor microcosm study was carried out. Over the course of the 29-day study, residues remained predominantly in the aqueous phase. A slow but steady degradation of RPA 202248 was observed leading to the formation of RPA 203328 (2-methylsulfonyl-4-trifluoromethylbenzoic acid), which has no herbicidal activity. The half-life of RPA 202248 was calculated to be 103 days. These findings indicate that aqueous degradation should be considered as a potential route of dissipation when assessing the fate of RPA 202248 in large scale impounded water bodies, such as ponds, lakes, or reservoirs in the Mid-West Corn Belt.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.