1,920
Views
92
CrossRef citations to date
0
Altmetric
Original Articles

END GROUP TRANSFORMATION OF POLYMERS PREPARED BY ATRP, SUBSTITUTION TO AZIDES

&
Pages 667-679 | Received 30 Oct 1998, Published online: 18 Aug 2006
 

Abstract

Polystyrenes, polyacrylates and poly(methyl methacrylate) prepared by atom transfer radical polymerization (ATRP) have predictable molecular weights, low polydispersities and well-defined halogen end groups. The halogen end groups have been substituted by other functionalities such as azides and amines. In order to predict the feasibility and selectivity of nucleophilic substitution reactions, the reactivities of the end groups of the different polymers were studied. First, model studies with benzyl halide (BzX), 1-phenylethyl halide (1-PEX), methyl 2-halopropionate (MXP), ethyl 2-bromoisobutyrate (EBiB) and 2-halopropionitrile (2-XPN) were performed. The models compounds were dissolved in DMF and after adding sodium azide (1.1 eq.), the reaction mixtures were stirred at 25°C. The relative magnitude of the rate constants for the reactions with the chlorinated substrates were found to be BzCl > MClP > 1-PECl ≈ 2-ClPN:22 > 6 > 1. Increased substitution at the carbon center decreased the rate of reaction, benzyl chloride reacted 22 times faster than 1-phenylethyl chloride. The brominated substrates reacted very fast. The rate constant of 1-PEBr, determined by competition experiments, was 4.5 times higher than the rate constant of benzyl chloride. Based on these results, the bromine end groups of different polymers were substituted under reaction conditions simular to those used for the model reactions. The end-functionalized polymers were characterized by 1H-NMR, IR and MALDI-TOFMS.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the Industrial Members of the ATRP Consortium at Carnegie Mellon University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.