73
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Mechanism of Disulfide–Disulfide Interchange in Polysulfide Polymer Melt Blend by Electron Ionization Mass Spectrometry. II

Pages 1119-1134 | Received 01 May 2003, Accepted 01 Jun 2003, Published online: 22 Aug 2007
 

Abstract

The degree of randomization, q, of structural units in melt blends of the polysulfide homopolymers A(PS1) and B(PS2), wherein the disulfide equivalents D A/D B = 1, were studied by electron ionization mass spectrometry. Over the temperature range of 207–219°C, the relaxation process, due to the dominant disulfide–disulfide interchange reactions, is postulated to follow an associative reaction mechanism. These intermolecular disulfide–disulfide interactions promote a transient enhancement of the sulfur rank in the activated complex resulting in formation of the randomized co‐polymer AB. The mass spectrometric experimental design enabled measurement of concentrations of reactants A(PS1) and B(PS2), as well as the randomized copolymer AB, by monitoring the abundance of dimer units a2, b2, and ab, respectively as a function of time. The degree of randomization, q, was observed in the absence of catalysts or solvents, notwithstanding the solvent/solute and solute/solvent characteristics of the polymer melt blend. The mechanism of this randomization process, was rationalized on the basis of the properties of sulfur, aided by the observation of macrocyclic monomeric and dimeric units during the retro‐polymerization reactions under the EI/MS conditions employed. The model polysulfide polymers A(PS1) and B(P52), used in this study were synthesized from bis(2‐chloroethyl)ether and bis(2‐chloro ethoxy)methane, respectively.

Acknowledgment

I would like to thank Jill Williams of Reprographic for preparing the figures and J. F. Kaysen for the preparation of this paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.