45
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Viscoelastic Behavior Of The Regular Alternating Terpolymers Of Ethene And Propene With Carbon Monoxide

, , , , &
Pages 293-305 | Received 21 Apr 2002, Accepted 29 Apr 2002, Published online: 07 Feb 2007
 

Abstract

A series of the alternating terpolymers of ethene (Et) and propene (Pr) with carbon monoxide (CO), with different Et/CO contents, was characterized by storage and loss shear moduli (measured in a frequency window spanning about three decades) at several fixed temperatures in the interval from 120° to 220°C.

The bell-like plot of the reduced (i.e., molar mass-independent) values of complex viscosity vs. Et/CO mass content was quantitatively reproduced by classical copolymerization theory assuming the strictly alternating Et/CO and Pr/CO copolymers as “virtual homopolymers” 11 and 22, and the strictly alternating (Et/CO)/(Pr/CO) terpolymer as an “alternating virtual copolymer” 12. Compared with other flexible-chain polymers, the apparent plateau moduli for the terpolymers were severalfold lower, suggesting an unusually loose structure of entanglement networks. Thus, the CO groups in the main chain of the terpolymers were ranked as the least effective entanglement formers, whereas the unlike dyads of the type (Et/CO)/(Pr/CO) were more effective than like dyads of the type (Et/CO)/(Et/CO) or (Pr/CO)/(Pr/CO).

The systematic hysteresis viscosity effects during initial heating up to 220°C and subsequent cooling down to 120°C for samples Et/CO=30.6 and Et/CO=31.9 were regarded as experimental evidence for the existence of ordered nanodomains in the initial nanostructured state that served as reinforcing bridges for a continuous disordered matrix.

Dedicated to Prof. A. E. Chalykh on the occasion of his 65th birthday.

Acknowledgments

This work was supported by Project INTAS-OPEN-97-418. The illuminative comments by Dr. Chr. Friedrich (Freiburg Materials Research Centre FMF) are gratefully appreciated.

Notes

Dedicated to Prof. A. E. Chalykh on the occasion of his 65th birthday.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.