202
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Parametric Effects on Particle Deposition in Abrasive Waterjet Surface Treatments

&
Pages 171-192 | Published online: 07 Feb 2007
 

Abstract

The abrasive waterjet (AWJ) has primarily been used for net-shape sectioning of engineering materials. In this study an AWJ was adopted for the surface treatment of commercially pure titanium (cpTi) and the contribution of treatment parameters to material removal and the deposition of particles within the substrate were examined. The surface texture and material removal rate were analyzed using conventional techniques whereas the quantity of abrasive particles embedded within the cpTi surfaces was determined using energy dispersive X-ray analysis (EDXA). Parametric effects related to particle hardness were distinguished from a comparison of surfaces treated with Aluminum oxide, garnet, and crushed glass abrasives. According to an analysis of variance (ANOVA), treatment responses were found to be primarily dependent on the abrasive size, abrasive hardness, angle of incidence, and jet pressure. The minimum and maximum concentration of particles embedded in the AWJ treated cpTi (in percent surface area covered) was 2.5 and 21.6%, respectively. Particle concentration and mean particle size in the cpTi increased with abrasive size, angle of incidence and jet pressure; the particle concentration reached saturation at an angle of incidence near 80°. Although abrasive hardness was important to the treatment responses, an increase in hardness beyond 800 on the Rosiwal scale resulted in minimal changes in material removal or other features of the process.

Acknowledgments

The authors gratefully acknowledge partial support for this investigation from the OMAX Corporation in the form of an equipment grant. The authors are also grateful to Dr. Robert Reno of the Physics Department at UMBC for help with interpretation of the EDXA.

Notes

aK.O. Lee S3818EL, Aberdeen, SD.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.