144
Views
11
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Formulation Composition and Dissolution Parameters on the Gel Strength of Controlled Release Hydrogel Tablets

, &
Pages 583-593 | Received 01 Nov 2000, Accepted 08 Mar 2001, Published online: 04 Apr 2002
 

Abstract

The impact of hydrogel polymers and dissolution media on tablet gel strength, Γ, of controlled release (CR) hydrogel tablets was investigated. CR tablets containing either hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), or carbomer were formulated with theophylline and Fast Flo® lactose, to produce tablets with a polymer content of 8, 15, and 30% w/w. Γ was measured using a previously reported method. The drug dissolution profiles were similar, irrespective of polymer type or dissolution media (DI water, 0.1 N HCl, and pH 6.8 phosphate buffer), at the same % w/w level of polymer. Γ, however, showed large and significant differences (p≤0.05) between tablets containing different polymers and between different dissolution media. Γ values were HPMC K100MP > HPC HXF > carbomer 971P (same % w/w) with absolute Γ values at 30% w/w in DI water of 6600, 4600, and 1600 ergs/cm3, respectively. Γ for HPMC based tablets was independent of changes in dissolution media, while the Γ values for HPC tablets were 18% lower in acid and buffer than in DI water. Of the polymers tested, carbomer based tablets had the lowest Γ values in all dissolution media and an unexpected 58% lower Γ in buffer compared with DI water or acid. Γ provides a quantitative measure of the effect of formulation and dissolution parameter changes on tablet gel layer strength, under in vitro stress conditions that may parallel in vivo tablet performance, but which cannot be deduced from a comparison of dissolution profiles or polymer viscosity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.